留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿水平孔复杂地质模型方位电磁波响应数值模拟

张意 康正明 冯宏 韩雪 陈刚

张意,康正明,冯宏,等. 煤矿水平孔复杂地质模型方位电磁波响应数值模拟[J]. 煤田地质与勘探,2022,50(5):118−128. doi: 10.12363/issn.1001-1986.21.12.0854
引用本文: 张意,康正明,冯宏,等. 煤矿水平孔复杂地质模型方位电磁波响应数值模拟[J]. 煤田地质与勘探,2022,50(5):118−128. doi: 10.12363/issn.1001-1986.21.12.0854
ZHANG Yi,KANG Zhengming,FENG Hong,et al. Numerical simulation of azimuth electromagnetic wave response of complex geological model of horizontal hole in coal mines[J]. Coal Geology & Exploration,2022,50(5):118−128. doi: 10.12363/issn.1001-1986.21.12.0854
Citation: ZHANG Yi,KANG Zhengming,FENG Hong,et al. Numerical simulation of azimuth electromagnetic wave response of complex geological model of horizontal hole in coal mines[J]. Coal Geology & Exploration,2022,50(5):118−128. doi: 10.12363/issn.1001-1986.21.12.0854

煤矿水平孔复杂地质模型方位电磁波响应数值模拟

doi: 10.12363/issn.1001-1986.21.12.0854
基金项目: 陕西省自然科学基础研究计划项目(2021JQ-590);陕西省教育厅专项科研计划项目(21JK0836);国家自然科学基金青年科学基金项目(42102350)
详细信息
    第一作者:

    张意,1986年生,男,新疆伊宁人,博士研究生,工程师,研究方向为电磁波测井方法及仪器. E-mail:yizhang86@163.com

    通信作者:

    康正明,1989年生,男,陕西靖边人,博士,讲师,从事电法测井理论方法研究. E-mail:kzm991430414@sina.cn

  • 中图分类号: TD17;P631

Numerical simulation of azimuth electromagnetic wave response of complex geological model of horizontal hole in coal mines

  • 摘要: 煤岩界面的预先、精准识别是实现煤矿巷道自动化掘进和煤矿智能化的关键技术之一,方位电磁波仪器探测距离较大,能够分辨岩性界面和界面方位,在油田测井中已取得成功应用,但在煤矿领域应用较少。为了研究方位电磁波测井在煤矿复杂三维(3D)模型中的探测性能,使用有限元数值模拟方法,考察了方位电磁波测井在煤矿测量环境中,不同发射频率和源距时受钻孔内流体的影响,以及采空区和起伏地层边界对方位电磁波测量的影响。结果表明:对于煤矿测井中的常见情况——孔中流体为空气时,方位电磁波响应受钻孔的影响较小;方位电磁波测量信号能够反映地层界面的起伏变化,其探测能力与发射频率、源距有关;方位电磁波响应对低阻采空区较敏感,但在高频发射时可以利用相位差信号实现对高阻采空区的探测。方位电磁波方法为煤矿井下水平孔煤岩界面和采空区测量提供了一种新技术手段,具有较大的应用潜力。

     

  • 图  PeriScope方位电磁波测井仪结构

    Ti为发射线圈;Ri为接收线圈

    Fig. 1  Structure of PeriScope azimuth electsromagnetic wave logging tool

    图  钻孔地质模型及钻孔横截面示意

    Fig. 2  Borehole geological model and borehole cross section

    图  钻孔介质影响对比

    Fig. 3  Comparison of the influence of media in drilling hole

    图  偏心距对方位电磁波测量信号的影响

    Fig. 4  Influence of eccentricity on electromagnetic wave measurement signal

    图  仪器位于钻孔底部时钻孔半径的影响

    Fig. 5  Influence of borehole radius when instrument is located at bottom of the well hole

    图  起伏地层模型

    Fig. 6  Undulating formation model

    图  起伏地层幅度影响

    Fig. 7  Influence of undulating formation amplitude

    图  仪器与地层界面距离的影响

    Fig. 8  Influence of distance between instrument and formation interface

    图  仪器穿过起伏地层界面响应

    Fig. 9  Instrument response through an undulating formation interface

    图  10  采空区地质模型

    Fig. 10  Geological model of goaf

    图  11  频率0.1 MHz时仪器纵向移动采空区测量响应对比

    Fig. 11  Comparison of measement response of instrument moving longitudinally in goaf at the frequency of 0.1 MHz

    图  12  频率0.4 MHz时仪器纵向移动采空区测量响应对比

    Fig. 12  Comparison of measurement response of instrument moving longitudinally in goaf at the frequency of 0.4 MHz

    图  13  频率2.0 MHz时仪器纵向移动采空区测量响应对比

    Fig. 13  Comparison of measement response of instrument moving longitudinally in goaf at the frequency of 2.0 MHz

    图  14  频率0.4 MHz时仪器横向移动采空区测量响应对比

    Fig. 14  Comparison of measurement response of instrument moving laterally in goaf at the frequency of 0.4 MHz

  • [1] 葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774−788. GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774−788.
    [2] 张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363−3370. ZHANG Qiang,SUN Shao’an,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363−3370.
    [3] 吴德忠,刘泉声,黄兴,等. 基于边界跟踪和神经网络的煤岩界面识别方法研究[J]. 煤炭工程,2021,53(6):140−146. WU Dezhong,LIU Quansheng,HUANG Xing,et al. Coal–rock interface recognition method based on boundary tracking algorithm and artificial neural network[J]. Coal Engineering,2021,53(6):140−146.
    [4] 李力,刘佳鹏,魏伟. 基于经验小波变换的煤岩界面识别超声回波处理方法研究[J]. 煤炭学报,2019,44(Sup.1):370−377. LI Li,LIU Jiapeng,WEI Wei. Signal processing method on ultrasonic echo from coal–rock interface based on EWT[J]. Journal of China Coal Society,2019,44(Sup.1):370−377.
    [5] 王莉,苏波. 综采工作面煤岩界面识别方法研究[J]. 中国设备工程,2020,11(1):215−216. WANG Li,SU Bo. Study on identification method of coal–rock interface in fully mechanized mining face[J]. China Plant Engineering,2020,11(1):215−216.
    [6] 王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914−922. WANG Lei,FAN Yiren,YUAN Chao,et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling(LWD)[J]. Petroleum Exploration and Development,2018,45(5):914−922.. doi: 10.11698/PED.2018.05.18
    [7] 胡旭飞,范宜仁,吴非,等. 随钻方位电磁波测井多参数快速反演[J]. 地球物理学报,2018,61(11):4690−4701. HU Xufei,FAN Yiren,WU Fei,et al. Fast multiple parameter inversion of azimuthal LWD electromagnetic measurement[J]. Chinese Journal of Geophysics,2018,61(11):4690−4701.. doi: 10.6038/cjg2018L0746
    [8] 张意,冯宏,韩雪,等. 石油电磁测井技术发展中的一些关键问题[J]. 石油地球物理勘探,2021,56(6):1430−1447. ZHANG Yi,FENG Hong,HAN Xue,et al. Key problems in the development of petroleum electromagnetic logging[J]. Oil Geophysical Prospecting,2021,56(6):1430−1447.
    [9] ZHU Mengbo,CHENG Jianyuan,ZHANG Zheng. Quality control of microseismic P–phase arrival picks in coal mine based on machine learning[J]. Computers and Geosciences,2021,156:104862.. doi: 10.1016/j.cageo.2021.104862
    [10] ZHU Mengbo,CHENG Jianyuan,CUI Weixiong,et al. Comprehensive prediction of coal seam thickness by using in–seam seismic surveys and Bayesian kriging[J]. Acta Geophysica,2019,67(4):825−836.
    [11] 王磊,范宜仁,操应长,等. 大斜度井/水平井随钻方位电磁波测井资料实时反演方法[J]. 地球物理学报,2020,63(4):1715−1724. WANG Lei,FAN Yiren,CAO Yingchang,et al. Real–time inversion of logging−while−drilling azimuthal electromagnetic measurements acquired in high−angle and horizontal wells[J]. Chinese Journal of Geophysics,2020,63(4):1715−1724.. doi: 10.6038/cjg2020M0617
    [12] 王磊. 深探测多分量随钻电磁波测井理论与正反演研究[D]. 青岛: 中国石油大学(华东), 2018.

    WANG Lei. Deep−detection multi−component logging−while−drilling electromagnetic logging: Theory, forward modeling and inversion/data processing[D]. Qingdao: China University of Petroleum(East China), 2018.
    [13] 王健,陈浩,王秀明,等. 有限元感应测井模拟的背景场选择方法研究[J]. 地球物理学报,2015,58(6):2177−2187. WANG Jian,CHEN Hao,WANG Xiuming,et al. Research on selection method of background field for finite element simulation of induction logging[J]. Chinese Journal of Geophysics,2015,58(6):2177−2187.. doi: 10.6038/cjg20150630
    [14] 王健,陈浩,王秀明. 用于固体矿床多分量感应测井响应模拟的矢量有限元法[J]. 地球物理学报,2016,59(1):355−367. WANG Jian,CHEN Hao,WANG Xiuming. Response modeling of multi–component induction logging tool in the mineral logging using vector finite element[J]. Chinese Journal of Geophysics,2016,59(1):355−367.. doi: 10.6038/cjg20160130
    [15] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206. CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206.
    [16] CHEN Gang,FAN Yiren,LI Quanxin. A study of coalbed methane(CBM) reservoir boundary detections based on azimuth electromagnetic waves[J]. Journal of Petroleum Science and Engineering,2019,179:432−443.. doi: 10.1016/j.petrol.2019.04.063
    [17] CHEN Gang,FAN Yiren,LI Quanxin. Using an azimuth electromagnetic wave imaging method to detect and characterize coal–seam interfaces and low–resistivity anomalies[J]. Journal of Environmental and Engineering Geophysics,2020,25(1):75−87.. doi: 10.2113/JEEG19-041
    [18] 张意,康正明,冯宏,等. 水平井煤岩界面方位电磁波测井仪器探测性能[J]. 煤田地质与勘探,2022,50(2):140−149. ZHANG Yi,KANG Zhengming,FENG Hong,et al. Detection performance of the azimuthal electromagnetic wave logging instrument at coal–rock interface in horizontal wells[J]. Coal Geology & Exploration,2022,50(2):140−149.. doi: 10.12363/issn.1001-1986.21.06.0334
    [19] 其木苏荣,赵永芳,井孝功. 偶极子在径向非均匀介质中的电磁场分布[J]. 大学物理,2004,23(8):16−19. QIMU Surong,ZHAO Yongfang,JING Xiaogong. The electromagnetic field of MD in radial inhomogeneous medium[J]. College Physics,2004,23(8):16−19.. doi: 10.3969/j.issn.1000-0712.2004.08.003
    [20] 仵杰,任垚煜,贺秋利,等. 电磁远探测仪器参数设计[J]. 西安石油大学学报(自然科学版),2021,36(1):105−112. WU Jie,REN Yaoyu,HE Qiuli,et al. Parameter design of remote detection tool with electromagnetic method[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2021,36(1):105−112.
    [21] 许巍,柯式镇,李安宗,等. 随钻电磁波测井仪器结构影响的三维有限元模拟[J]. 中国石油大学学报(自然科学版),2016,40(6):50−56. XU Wei,KE Shizhen,LI Anzong,et al. Structural effects analysis of an electromagnetic wave propagation resistivity LWD tool by 3D finite element method[J]. Journal of China University of Petroleum(Natural Science Edition),2016,40(6):50−56.
  • 加载中
图(14)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  25
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2022-03-16
  • 发布日期:  2022-05-25
  • 网络出版日期:  2022-04-29

目录

    /

    返回文章
    返回