留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随钻测量自保护密封原理及影响因素分析

王耀民 叶根飞 赵永哲 高科 刘卫卫 段会军

王耀民,叶根飞,赵永哲,等. 随钻测量自保护密封原理及影响因素分析[J]. 煤田地质与勘探,2022,50(4):153−158. doi: 10.12363/issn.1001-1986.21.11.0668
引用本文: 王耀民,叶根飞,赵永哲,等. 随钻测量自保护密封原理及影响因素分析[J]. 煤田地质与勘探,2022,50(4):153−158. doi: 10.12363/issn.1001-1986.21.11.0668
WANG Yaoming,YE Genfei,ZHAOYongzhe ,et al. Principle of a self-protective sealing device for MWD and its influencing factors[J]. Coal Geology & Exploration,2022,50(4):153−158. doi: 10.12363/issn.1001-1986.21.11.0668
Citation: WANG Yaoming,YE Genfei,ZHAOYongzhe ,et al. Principle of a self-protective sealing device for MWD and its influencing factors[J]. Coal Geology & Exploration,2022,50(4):153−158. doi: 10.12363/issn.1001-1986.21.11.0668

随钻测量自保护密封原理及影响因素分析

doi: 10.12363/issn.1001-1986.21.11.0668
基金项目: 国家自然科学基金项目(42172345)
详细信息
    第一作者:

    王耀民,1998年生,男,河南郑州人,硕士研究生,从事近水平钻进工艺研究工作. E-mail:1679516762@qq.com

    通信作者:

    高科,1977年生,男,内蒙古商都人,博士,教授,从事仿生钻探机具研究工作. E-mail:47422953@qq.com

  • 中图分类号: TD402

Principle of a self-protective sealing device for MWD and its influencing factors

  • 摘要: 为适应钻孔深度越来越深要求,延长随钻测量工作寿命,针对组合静密封结构缺陷,设计一种适用于随钻测量仪器的自保护密封装置。通过静力学膨胀数值模拟对橡胶气囊膨胀位移与气压关系进行研究,并在此基础上对模型尺寸大小不同,结果不同原因进行分析,讨论造成自保护密封装置模拟结果不同的因素,确定气囊直径、宽度、壁厚和内腔宽度4个自变量,并对4个自变量进行模拟,探究其与橡胶气囊膨胀关系;在静力学膨胀模拟基础上,建立自保护密封简易模型,通过流体数值模拟对其密封效果进行分析。结果表明:自保护密封装置橡胶气囊膨胀位移大小与压力成线性关系,橡胶气囊膨胀位移比$ k $与气囊直径和宽度呈二次函数关系,与气囊内腔宽度和壁厚成反比且橡胶气囊内外圈膨胀位移比$ k $大小不同,并随着自变量参数增大,外圈膨胀位移比$ k $逐渐小于内圈,可推导出橡胶气囊结构尺寸存在膨胀位移比$ k $最大的临界值; 在自保护密封装置保护下,自保护密封简易模型内部无水流动轨迹,证明了自保护密封装置可靠。橡胶气囊结构尺寸临界值的存在为设计在仪器空间有限情况下达到最佳密封效果的自保护密封装置尺寸提供依据。

     

  • 图  自保护密封装置剖面

    1—外壁;2—仪器壳体;3—中心轴;4—O 型密封圈;5—固定支撑;6—橡胶气囊;7—固定螺栓;8—自保护气体发生壳体;9—自保护气体药品;10—自保护发热电阻丝;11—内部压力传感器

    Fig. 1  Section of the self-protective sealing device

    图  自保护密封装置工作原理

    Fig. 2  Working principle of the self-protection sealing device

    图  自保护密封装置网格

    Fig. 3  Grid diagram of the self-protection sealing device

    图  橡胶气囊膨胀位移随气压变化

    Fig. 4  Variation diagram of the expansion displacement of the rubber airbag with air pressure

    图  自保护密封装置数值模拟流体轨迹

    Fig. 5  Diagram of the fluid trajectory by numerical simulation of the self-protective sealing device

    图  自保护密封装置结构

    Fig. 6  Structural diagram of the self-protective sealing device

    图  自保护密封装置膨胀位移

    Fig. 7  Expansion displacement diagram of the self-protective sealing device

    图  橡胶气囊膨胀位移比变化

    Fig. 8  Variation diagram of the expansion displacement ratio of the rubber airbag device

    表  1  自保护密封装置结构参数

    Table  1  Structural parameters of the self-protective sealing device mm

    模型内径壁厚内腔宽度气囊宽度外径
    模型1330.32.55340
    模型2290.54.25540
    下载: 导出CSV

    表  2  不同气压下自保护密封装置膨胀位移

    Table  2  Expansion displacement of the self-protective sealing device under different air pressures

    气压/MPa膨胀位移/mm
    模型1模型2
    0.1 1.21 0.83
    0.2 2.41 1.65
    0.3 3.61 2.48
    0.4 4.81 3.31
    0.5 6.02 4.14
    1.0 12.03 8.27
    1.5 18.04 12.41
    2.0 24.06 16.54
    下载: 导出CSV

    表  3  橡胶气囊膨胀自变量参数

    Table  3  Independent variable parameters of rubber airbag expansion mm

    自变量气囊直径气囊宽度内腔宽度气囊壁厚
    气囊1243.02.40.3
    气囊2283.52.80.6
    气囊3324.03.20.9
    气囊4364.53.61.2
    气囊5405.04.01.5
    下载: 导出CSV
  • [1] 石智军,姚克,田宏亮,等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术,2019,47(5):22−28. SHI Zhijun,YAO Ke,TIAN Hongliang,et al. Present situation and prospect of directional drilling technology and equipment while drilling measurement in underground coal mine[J]. Coal Science and Technology,2019,47(5):22−28.
    [2] 张晶. 随钻仪器在大斜度定向井上的提速技术研究[J]. 石油石化节能,2021,11(7):23−25. ZHANG Jing. Research on speed–up technology of tools while drilling in highly deviated directional wells[J]. Energy Conservation in Petroleum & Petrochemical Industry,2021,11(7):23−25.. doi: 10.3969/j.issn.2095-1493.2021.07.008
    [3] 范浩思,张宏阜,李元生,等. 定向井随钻测量仪器可靠性分析[J]. 石油工业技术监督,2019,35(10):51−53. FAN Haosi,ZHANG Hongfu,LI Yuansheng,et al. Reliability analysis of MWD instrument in directional well[J]. Technology Supervision in Petroleum Industry,2019,35(10):51−53.
    [4] 雷刚,赵春,樊伟,等. 两种密封结构橡胶密封圈密封性对比分析[J]. 润滑与密封,2021,46(10):134−140. LEI Gang,ZHAO Chun,FAN Wei,et al. Comparative analysis of sealing performance of rubber sealing rings with two sealing structure[J]. Lubrication Engineering,2021,46(10):134−140.. doi: 10.3969/j.issn.0254-0150.2021.10.020
    [5] 李新荣,修霞,叶杨,等. 丁腈橡胶O型密封圈力学性能分析[J]. 橡塑技术与装备(橡胶),2020,46(7):41−44. LI Xinrong,XIU Xia,YE Yang,et al. Analysis of mechanical properties of NBR O–ring[J]. China Rubber/ Plastics Technology and Equipment(Rubber),2020,46(7):41−44.
    [6] 薛勇,唐鹏涛. 汽轮机快速冷却装置密封圈断裂失效过程模拟[J]. 机械制造与自动化,2021,50(5):62−65. XUE Yong,TANG Pengtao. Simulation of fracture failure of sealing ring in steam turbine rapid cooling unit[J]. Mechanical Manufacturing and Automation,2021,50(5):62−65.
    [7] 史瑞. 采煤机DO型浮动油封密封圈接触应力与耐磨性研究[D]. 沈阳: 沈阳工业大学, 2019.

    SHI Rui. Research on contact stress and wear resistance of DO type floating seal of shearer[D]. Shenyang: Shenyang University of Technology, 2019.
    [8] 齐中华. MWD定向仪器信号的干扰分析及排除探讨[J]. 石化技术,2020,27(8):139−145. QI Zhonghua. Interference analysis and elimination of MWD directional instrument signal[J]. Petrochemical Industry Technology,2020,27(8):139−145.. doi: 10.3969/j.issn.1006-0235.2020.08.073
    [9] 吴川,乌效鸣,文国军,等. 钻孔测斜仪密封结构研究[J]. 润滑与密封,2013,38(6):98−100. WU Chuan,WU Xiaoming,WEN Guojun,et al. Research on sealing structure of clinograph[J]. Lubrication Engineering,2013,38(6):98−100.. doi: 10.3969/j.issn.0254-0150.2013.06.021
    [10] 董岩,刘江涛,于成龙,等. 一种新型主动密封式旋转防喷器的研制[J]. 石油机械,2014,42(10):22−25. DONG Yan,LIU Jiangtao,YU Chenglong,et al. Development of a novel active sealing rotating control device[J]. China Petroleum Machinery,2014,42(10):22−25.. doi: 10.3969/j.issn.1001-4578.2014.10.006
    [11] 朱亮,李双喜,张秋翔,等. 主动调控型密封调控试验研究[J]. 流体机械,2012,40(7):1−6. ZHU Liang,LI Shuangxi,ZHANG Qiuxiang,et al. Experiment study on active control of non–contacting mechanical seal[J]. Fluid Machinery,2012,40(7):1−6.. doi: 10.3969/j.issn.1005-0329.2012.06.001
    [12] 王超,杨高潮,黄静,等. 某型船舶用耐油耐海水橡胶囊的研制[J]. 特种橡胶制品,2021,42(4):35−38. WANG Chao,YANG Gaochao,HUANG Jing,et al. Development of oil and sea water resistant rubber capsule for a ship[J]. Special Purpose Rubber Products,2021,42(4):35−38.
    [13] 朱良义,舒逢春. 空气弹簧力学模型研究[J]. 新型工业化,2020,10(7):61−64. ZHU Liangyi,SHU Fengchun. Study on mechanical model of air spring[J]. The Journal of New Industrialization,2020,10(7):61−64.
    [14] 高科, 孙友宏, 王耀民, 等. 一种主动式自平衡自保护智能的密封系统: CN110332315A[P]. 2019–10–15.
    [15] 王耀民, 谢晓波, 高科, 等. 一种主动式自平衡自保护智能的密封系统: CN210265869U[P]. 2020–04–07.
    [16] 宋艳亮. 综采工作面液压控制阀用O形密封圈的失效分析与选型[J]. 煤矿机电,2021,42(3):57−59. SONG Yanliang. Failure analysis and selection of O–ring for hydraulic control valve in fully mechanized mining face[J]. Colliery Mechanical & Electrical Technology,2021,42(3):57−59.
    [17] 祝娟. 变截面弹性密封圈流体动压密封机理与实验研究[D]. 大庆: 东北石油大学, 2017.

    ZHU Juan. Research of the hydrodynamic sealing mechanism and experiment of variable cross section sealing ring[D]. Daqing: Northeast Petroleum University, 2017.
    [18] 金红超,何锋,杨洪江,等. 空气弹簧生产工艺及关键控制点的研究[J]. 液压气动与密封,2021,41(5):71−74. JIN Hongchao,HE Feng,YANG Hongjiang,et al. Study on the production process and key control points of air spring[J]. Hydraulics Pneumatics & Seals,2021,41(5):71−74.. doi: 10.3969/j.issn.1008-0813.2021.05.019
    [19] 王晓辉,常亮,聂小华,等. 某装备车门橡胶密封条密封性敏度分析及改良设计[J]. 科学技术与工程,2020,20(11):4591−4598. WANG Xiaohui,CHANG Liang,NIE Xiaohua,et al. Sealing sensitivity analysis and improved design of weather strips for a door seal[J]. Science Technology and Engineering,2020,20(11):4591−4598.. doi: 10.3969/j.issn.1671-1815.2020.11.057
    [20] 孟艳梅,李灵凤. 变壁厚密封圈旋压成形的有限元分析[J]. 机械研究与应用,2008,21(6):105−107. MENG Yanmei,LI Lingfeng. Finite element simulation of the forming process of varying thickness gland[J]. Mechanical Research & Application,2008,21(6):105−107.. doi: 10.3969/j.issn.1007-4414.2008.06.036
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  57
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-01-18
  • 发布日期:  2022-04-25
  • 网络出版日期:  2022-04-21

目录

    /

    返回文章
    返回