留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厚煤层内小断层的反射槽波探测技术及应用

苏晓云

苏晓云.厚煤层内小断层的反射槽波探测技术及应用[J].煤田地质与勘探,2022,50(1):25−30. doi: 10.12363/issn.1001-1986.21.11.0604
引用本文: 苏晓云.厚煤层内小断层的反射槽波探测技术及应用[J].煤田地质与勘探,2022,50(1):25−30. doi: 10.12363/issn.1001-1986.21.11.0604
SU Xiaoyun.Application of reflected in-seam wave detection for small faults in thick coal seams[J].Coal Geology & Exploration,2022,50(1):25−30. doi: 10.12363/issn.1001-1986.21.11.0604
Citation: SU Xiaoyun.Application of reflected in-seam wave detection for small faults in thick coal seams[J].Coal Geology & Exploration,2022,50(1):25−30. doi: 10.12363/issn.1001-1986.21.11.0604

厚煤层内小断层的反射槽波探测技术及应用

doi: 10.12363/issn.1001-1986.21.11.0604
基金项目: 国家重点研发计划课题(2018YFC0807804);中煤科工集团西安研究院有限公司科技创新基金项目(2020XAYDC02-03,2020XAYJSQ12)
详细信息
    第一作者:

    苏晓云,1988年生,男,陕西省神木人,硕士,助理研究员,从事地质与煤田地质的研究工作. E-mail:suxiaoyun@cctegxian.com

  • 中图分类号: P631

Application of reflected in-seam wave detection for small faults in thick coal seams

  • 摘要: 厚煤层、巨厚煤层工作面内的小断层一般断距或延展长度的规模较小,目前的探查方法和仪器受分辨率限制一般难以探查这类小断层,而小断层探查不清,将会对智能化工作面高效回采带来较大影响。针对这一问题,开展厚煤层内小断层反射槽波探测的数值模拟及现场实验工作。在数值模拟方面,采用交错网格有限差分法对厚煤层(6 m)、巨厚煤层(20 m)两种环境下含小断层(落差小于3 m)的数值模型进行三分量弹性波模拟,在对数值模拟结果进行频谱分析的基础上研究不同模型中的直达槽波与反射槽波的特征。在实际探查方面,通过不同矿区厚煤层、巨厚煤层实际发育断层进行透、反射数据综合研究,分析和比较透射与反射槽波方法对小断层的探查情况。研究表明,工面内构造发育相对简单的条件下,反射槽波对厚煤层、巨厚煤层工作面中小断层的探测较透射槽波有更强的识别性及准确性。

     

  • 图  正演模型平面示意图

    Fig. 1  Schematic plane of the forward model

    图  正演模拟槽波记录

    Fig. 2  Forward simulation in-seam wave record

    图  不同煤厚频谱分析

    Fig. 3  Spectrum analysis diagram

    图  反射槽波成像结果

    Fig. 4  Diffraction migration imaging of the in-seam wave

    图  厚煤层探测试验透射与反射槽波成像对比

    Fig. 5  Comparison of transmitted and reflected in-seam wave imaging in the thick coal seam detection test

    图  巨厚煤层探测试验透射与反射槽波成像对比

    Fig. 6  Comparison of transmitted and reflected in-seam wave imaging in the extremely thick coal seam detection test

    表  1  4种模型参数

    Table  1  Parameters of the four models

    模型厚度/
    m
    倾角/
    (°)
    断层落差/
    m
    ρ/
    (g·cm−3)
    vp/
    (m·s−1)
    vs/
    (m·s−1)
    砂岩顶板202.263 8002 200
    煤层Model 16451.51.262 2001 300
    Model 2690
    Model 320452.01.302 0001 200
    Model 42090
    砂岩底板202.263 8002 200
    下载: 导出CSV
  • [1] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295−305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295−305.
    [2] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.. doi: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.. doi: 10.3969/j.issn.1001-1986.2021.01.003
    [3] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126.

    CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.
    [4] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi−attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.
    [5] 孟凡彬. 煤系地层下的小断层识别影响因素探讨[J]. 工程地球物理学报,2019,16(3):259−265.. doi: 10.3969/j.issn.1672-7940.2019.03.001

    MENG Fanbin. Discussion on factors affecting identification of small faults under coal measures strata[J]. Chinese Journal of Engineering Geophysics,2019,16(3):259−265.. doi: 10.3969/j.issn.1672-7940.2019.03.001
    [6] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141.. doi: 10.3969/j.issn.1001-1986.2016.06.025

    CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141.. doi: 10.3969/j.issn.1001-1986.2016.06.025
    [7] 苏晓云. 我国主要矿区典型煤层槽波赋存发育特征研究[J]. 煤炭工程,2020,52(10):137−142.

    SU Xiaoyun. The occurrence and development characteristics of in-seam wave in main mining areas of China[J]. Coal Engineering,2020,52(10):137−142.
    [8] 赵朋朋. 槽波透射与反射联合勘探在小构造探测中的应用[J]. 煤炭工程,2017,49(5):47−50.. doi: 10.11799/ce201705015

    ZHAO Pengpeng. Application of ISS transmission and reflection method in detection of small structures[J]. Coal Engineering,2017,49(5):47−50.. doi: 10.11799/ce201705015
    [9] 张国恩. 槽波地震勘探技术在采煤工作面构造探测中的应用[J]. 煤矿安全,2020,51(8):164−168.

    ZHANG Guo’en. Application of slot wave seismic exploration technology in coal mining face structure detection[J]. Safety in Coal Mines,2020,51(8):164−168.
    [10] 姚小帅,冯磊,廉洁,等. 槽波地震反射法在断裂构造探测中的应用[J]. 中州煤炭,2015(9):101−104.. doi: 10.3969/j.issn.1003-0506.2015.09.032

    YAO Xiaoshuai,FENG Lei,LIAN Jie,et al. Application of in−seam seismic reflection method in fracture structure detection[J]. Zhongzhou Coal,2015(9):101−104.. doi: 10.3969/j.issn.1003-0506.2015.09.032
    [11] 廉洁,李松营,王伟,等. 槽波地震勘探技术在义马矿区的应用[J]. 煤炭科学技术,2015,43(12):162−165.

    LIAN Jie,LI Songying,WANG Wei,et al. in-seam wave seismic exploration technology applied to Yima mining area[J]. Coal Science and Technology,2015,43(12):162−165.
    [12] 赵朋朋,张军,刘毅. 槽波反射法在工作面小构造探测中的应用[J]. 中州煤炭,2016(10):138−141.

    ZHAO Pengpeng,ZHANG Jun,LIU Yi. Application of ISS reflection method in detection of small structures on working face[J]. Zhongzhou Coal,2016(10):138−141.
    [13] 杨辉. 反射槽波在阳煤和顺矿区小构造探查中的应用[J]. 煤田地质与勘探,2018,46(增刊1):37−40.

    YANG Hui. Application of reflected in–seam waves in detecting small structure in Heshun mining area of Yangquan coal group[J]. Coal Geology & Exploration,2018,46(Sup.1):37−40.
    [14] 鲍远堂,王季,王强. 凌志达15207工作面反射槽波综合探测[J]. 能源与环保,2019,41(1):58−61.

    BAO Yuantang,WANG Ji,WANG Qiang. Integrated detection of reflected in–seam wave on 15207 working face of Lingzhida coal industry company[J]. China Energy and Environmental Protection,2019,41(1):58−61.
    [15] 姬广忠,程建远,朱培民,等. 煤矿井下槽波三维数值模拟及频散分析[J]. 地球物理学报,2012,55(2):645−654.

    JI Guangzhong,CHENG Jianyuan,ZHU Peimin,et al. 3D numerical simulation and dispersion analysis of in–seam wave in underground coal mine[J]. Chinese Journal of Geophysics,2012,55(2):645−654.
    [16] 皮娇龙,滕吉文,刘有山. 地震槽波的数学-物理模拟初探[J]. 地球物理学报,2018,61(6):2481−2493.. doi: 10.6038/cjg2018K0529

    PI Jiaolong,TENG Jiwen,LIU Youshan. Preliminary study on the numerical−physical simulation of seismic in-seam waves[J]. Chinese Journal of Geophysics,2018,61(6):2481−2493.. doi: 10.6038/cjg2018K0529
    [17] 苏晓云. 复合煤层中夹矸对槽波探测解释断层落差的影响[J]. 煤田地质与勘探,2020,48(3):182−187.. doi: 10.3969/j.issn.1001-1986.2020.03.026

    SU Xiaoyun. Influence of parting in composite coal seam on interpretation of fault throw by in-seam wave seismic exploration[J]. Coal Geology & Exploration,2020,48(3):182−187.. doi: 10.3969/j.issn.1001-1986.2020.03.026
    [18] 马彦龙. 反射槽波探测陷落柱正演模拟及应用研究[J]. 能源与环保,2021,43(5):138−144.

    MA Yanlong. Forward modeling and application of reflection trough wave detection collapse column[J]. China Energy and Environmental Protection,2021,43(5):138−144.
    [19] 王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报,2015,40(8):1879−1885.

    WANG Ji. Experiment and method of void roadway detection using reflected in–seam wave[J]. Journal of China Coal Society,2015,40(8):1879−1885.
    [20] 姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121−124.. doi: 10.3969/j.issn.1001-1986.2017.01.024

    JI Guangzhong. Diffraction migration imaging of reflected in−seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121−124.. doi: 10.3969/j.issn.1001-1986.2017.01.024
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  23
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2021-12-29
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-01-27

目录

    /

    返回文章
    返回