留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脆性变形序列构造煤纳米孔隙和粗糙度的原子力显微镜研究

张宁远 姚素平

张宁远,姚素平. 脆性变形序列构造煤纳米孔隙和粗糙度的原子力显微镜研究[J]. 煤田地质与勘探,2022,50(5):32−42. doi: 10.12363/issn.1001-1986.21.09.0500
引用本文: 张宁远,姚素平. 脆性变形序列构造煤纳米孔隙和粗糙度的原子力显微镜研究[J]. 煤田地质与勘探,2022,50(5):32−42. doi: 10.12363/issn.1001-1986.21.09.0500
ZHANG Ningyuan,YAO Suping. Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy[J]. Coal Geology & Exploration,2022,50(5):32−42. doi: 10.12363/issn.1001-1986.21.09.0500
Citation: ZHANG Ningyuan,YAO Suping. Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy[J]. Coal Geology & Exploration,2022,50(5):32−42. doi: 10.12363/issn.1001-1986.21.09.0500

脆性变形序列构造煤纳米孔隙和粗糙度的原子力显微镜研究

doi: 10.12363/issn.1001-1986.21.09.0500
基金项目: 国家自然科学基金面上项目(42072152)
详细信息
    第一作者:

    张宁远,1998年生,男,湖北仙桃人,硕士研究生,研究方向为非常规油气储层. E-mail:m15908619262@163.com

    通信作者:

    姚素平,1965年生,男,安徽无为人,博士,教授,从事有机地球化学和有机岩石学研究. E-mail:spyao@nju.edu.cn

  • 中图分类号: TE122

Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy

  • 摘要: 煤孔隙结构是煤层气勘探开发与煤矿安全研究中的关键问题之一。构造煤相比于原生结构煤非均质性强,是煤储层研究中的热点和难点。采用原子力显微镜,结合NanoScope Analysis和Gwyddion分析软件,对脆性变形序列构造煤的孔隙结构和表面粗糙度特征进行研究。结果表明:构造作用整体上促进了脆性变形煤孔隙的发育,但不同脆性变形构造煤受构造作用影响的程度存在明显差异。根据煤受构造作用影响的程度,脆性变形煤孔隙结构演化可划分为强弱2个阶段:弱脆性变形阶段(原生结构煤—碎裂煤—片状煤—碎斑煤)构造作用对煤体的孔隙结构影响较小,平均孔数量缓慢增长,平均孔径缓慢减小,该阶段构造作用主要促进了100~200 nm大孔的发育;强脆性变形阶段(碎斑煤—碎粒煤—薄片煤)构造作用对煤体孔隙结构产生了显著影响,平均孔数量迅速增长,平均孔径迅速减小,这一阶段构造作用主要促进了10~50 nm介孔和50~100 nm大孔的发育。这表明脆性变形构造煤孔隙结构并非简单的线性演变。不同脆性变形煤的算术平均粗糙度和均方根粗糙度参数分别为3.00~6.05 nm和3.94~7.62 nm,其中,弱脆性变形阶段粗糙度整体较高且无明显变化,而强脆性变形阶段粗糙度迅速降低。通过AFM剖面分析,建立了煤表面孔隙形态的数学模型。基于该模型的算术平均粗糙度模拟结果表明,大孔是煤表面粗糙度的主要贡献者,构造作用主要通过影响煤中的孔隙结构,进而影响煤的表面粗糙度。

     

  • 图  样品宏−微观变形特征

    (a)、(b) 样号WG-6,原生结构煤;(c)、(d) 样号WG-4,碎裂煤;(e)、(f) 样号QYZ-70,片状煤;(g)、(h) 样号RL-2,碎斑煤;(i)、(j) 样号QD-3,碎粒煤;(k)、(l) 样号QYZ-86,薄片煤;(a)、(c)、(e)、(g)、(i)、(k)为样品的手标本照片;(b)、(d)、(f)、(h)、(j)、(l)为样品的显微镜反射光照片,×50

    Fig. 1  Micro and macro deformation characteristics of coal samples

    图  Watershed法识别AFM图像中的孔隙

    Fig. 2  Pores marked by the Watershed method

    图  不同构造煤的AFM图像

    (a) 样号WG-6,原生结构煤;(b) 样号WG-4,碎裂煤;(c) 样号QYZ-70,片状煤;(d) 样号RL-2,碎斑煤;(e) 样号QD-3,碎粒煤;(f) 样号QYZ-86,薄片煤;扫描面积均为5 μm×5 μm,扫描点数均为512×512

    Fig. 3  Typical AFM images of coal samples

    图  平均孔数量和平均孔径与构造变形程度之间的关系

    Fig. 4  Relationships between the number of mean pores and mean pore size and tectonic deformation degree

    图  样品的孔径分布

    Fig. 5  Pore size distribution of coal samples

    图  基于AFM的样品累积孔面积

    Fig. 6  Total pore surface area of coal samples based on AFM

    图  基于氮气吸附的构造煤累积比表面积[24-26]

    Fig. 7  Total specific surface area of different brittle tectonic deformed coals[24-26]

    图  RaRq与构造变形程度之间的关系

    Fig. 8  Relationships between Ra and Rq and tectonic deformation degree

    图  不同大小孔隙的几何模型

    Fig. 9  Mathematical models of pores of different radius

    图  10  AFM图像的剖面分析

    (a) 样号WG-6,原生结构煤;(b) 样号QYZ-70,片状煤;(c) 样号QD-3,碎粒煤;剖面位置如图3a图3c图3e所示

    Fig. 10  Sectional analysis of AFM images

    表  1  样品基本信息

    Table  1  General information of coal samples

    样品号构造煤类型采样地地层代号Rran/%显微组分体积分数/%
    镜质组惰质组壳质组矿物
    WG-6原生结构煤五沟煤矿P1s1.2288.73.10.57.7
    WG-4碎裂煤五沟煤矿P1s1.1679.815.71.03.5
    QYZ-70片状煤钱营孜煤矿P2ss1.0160.630.08.70.7
    RL-2碎斑煤任楼煤矿P2x0.9398.31.10.60
    QD-3碎粒煤祁东煤矿P2x1.1095.01.12.21.7
    QYZ-86薄片煤钱营孜煤矿P2ss1.0388.46.33.71.6
    下载: 导出CSV

    表  2  样品孔隙结构参数

    Table  2  Nanopore structural parameters of coal samples

    样品号Rran/
    %
    平均孔
    数量
    平均孔
    径/nm
    平均孔面
    积/nm2
    面孔率/
    %
    WG-6 1.22 86 131.4 24660 8.13
    WG-4 1.16 171 125.7 24950 16.27
    QYZ-70 1.01 208 115.4 20230 16.79
    RL-2 0.93 245 107.7 15870 15.55
    QD-3 1.10 455 87.2 9410 17.06
    QYZ-86 1.03 685 68.8 5840 15.93
    下载: 导出CSV

    表  3  样品表面粗糙度参数

    Table  3  Surface roughness statistics of coal samples

    样品号粗糙度参数
    Ra/nmRq/nmRskRku
    WG-6 4.33±1.33 5.87±1.59 −0.75±0.55 5.26±1.37
    WG-4 5.94±0.72 7.53±0.83 −0.29±0.17 3.24±0.39
    QYZ-70 4.79±0.78 6.22±1.00 −0.56±0.22 3.75±0.54
    RL-2 6.02±0.69 7.58±0.81 −0.39±0.25 3.19±0.48
    QD-3 5.01±0.60 6.31±0.77 0.03±0.09 3.12±0.30
    QYZ-86 3.00±0.30 3.98±0.42 −0.45±0.26 4.80±1.44
    注:粗糙度参数以平均值±标准差的形式表示。
    下载: 导出CSV
  • [1] 李明. 构造煤结构演化及成因机制[D]. 徐州: 中国矿业大学, 2013.

    LI Ming. Structure evolution and deformation mechanism of tectonically deformed coal[D]. Xuzhou: China University of Mining and Technology, 2013.
    [2] REN Jiangang,SONG Zhimin,LI Bing,et al. Structure feature and evolution mechanism of pores in different metamorphism and deformation coals[J]. Fuel,2021,283:119292.
    [3] 朱海涛. 基于AFM的不同变质变形煤的超微结构研究[D]. 焦作: 河南理工大学, 2014.

    ZHU Haitao. Study on the microstructure of different metamorphic deformed coal based on AFM[D]. Jiaozuo: Henan Polytechnic University, 2014.
    [4] 张瑞刚,方李涛,胡波,等. 朱仙庄矿构造煤结构及其孔隙特征[J]. 煤田地质与勘探,2015,43(4):6−10. ZHANG Ruigang,FANG Litao,HU Bo,et al. Tectonic coal structure and pore characteristics of Zhuxianzhuang mine[J]. Coal Geology & Exploration,2015,43(4):6−10.. doi: 10.3969/j.issn.1001-1986.2015.04.002
    [5] 张晓辉. 韩城矿区构造煤孔隙结构多尺度下的精细表征[D]. 太原: 太原理工大学, 2014.

    ZHANG Xiaohui. The fine characterization of pore structure of tectonically deformed coals from Hancheng mining area on multiscale[D]. Taiyuan: Taiyuan University of Technology, 2014.
    [6] CHENG Yuanping,PAN Zhejun. Reservoir properties of Chinese tectonic coal:A review[J]. Fuel,2020,260:116350.
    [7] 么玉鹏. 脆性变形系列构造煤物性特征及其结构定量表征[D]. 徐州: 中国矿业大学, 2017.

    YAO Yupeng. Physical properties of brittle deformation series tectonically defromed coal and quantitative characterization of its structure[D]. Xuzhou: China University of Mining and Technology, 2017.
    [8] 董夔,贾建称,巩泽文,等. 淮北许疃矿构造煤孔隙结构及压敏效应[J]. 煤田地质与勘探,2019,47(2):58−65. DONG Kui,JIA Jiancheng,GONG Zewen,et al. Study on pore structure and pressure–sensitive effect of tectonic coal in Huaibei Xutuan mine[J]. Coal Geology & Exploration,2019,47(2):58−65.
    [9] 高彬,黄华州,宁娜,等. 构造煤纳米级孔隙特征及其对含气性的影响[J]. 煤田地质与勘探,2018,46(5):182−187. GAO Bin,HUANG Huazhou,NING Na,et al. Pore size characteristics of tectonic coal and its influence on gas bearing properties[J]. Coal Geology & Exploration,2018,46(5):182−187.. doi: 10.3969/j.issn.1001-1986.2018.05.028
    [10] PAN Jienan,ZHU Haitao,HOU Quanlin,et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel,2015,139:94−101.
    [11] JIAO Kun,YAO Suping,ZHANG Ke,et al. The evolution of nanopores and surface roughness in naturally matured coals in South China:An atomic force microscopy and image processing study[J]. Fuel,2018,234:1123−1131.
    [12] WANG Shaoqing,LIU Shimin,SUN Yibo,et al. Investigation of coal components of Late Permian different ranks bark coal using AFM and Micro–FTIR[J]. Fuel,2017,187:51−57.
    [13] ZHAO Shihu,LI Yong,WANG Yanbin,et al. Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing[J]. Fuel,2019,244:78−90.
    [14] LIU Xianfeng,SONG Dazhao,HE Xueqiu,et al. Nanopore structure of deep–burial coals explored by AFM[J]. Fuel,2019,246:9−17.
    [15] LI Yong,YANG Jianghao,PAN Zhejun,et al. Nanoscale pore structure and mechanical property analysis of coal:An insight combining AFM and SEM images[J]. Fuel,2020,260:116352.
    [16] SONG Yu,JIANG Bo,LI Ming,et al. A review on pore–fractures in tectonically deformed coals[J]. Fuel,2020,278:118248.
    [17] 宋晓夏,唐跃刚,李伟,等. 中梁山南矿构造煤吸附孔分形特征[J]. 煤炭学报,2013,38(1):134−139. SONG Xiaoxia,TANG Yuegang,LI Wei,et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine[J]. Journal of China Coal Society,2013,38(1):134−139.
    [18] LIU Hewu,JIANG Bo. Stress response of noncovalent bonds in molecular networks of tectonically deformed coals[J]. Fuel,2019,255:115785.
    [19] SONG Yu,JIANG Bo,LIU Jiegang. Nanopore structural characteristics and their impact on methane adsorption and diffusion in low to medium tectonically deformed coals:Case study in the Huaibei coal field[J]. Energy & Fuels,2017,31:6711−6723.
    [20] 琚宜文,姜波,侯泉林,等. 构造煤结构–成因新分类及其地质意义[J]. 煤炭学报,2004,29(5):513−517. JU Yiwen,JIANG Bo,HOU Quanlin,et al. The new structure–genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China Coal Society,2004,29(5):513−517.. doi: 10.3321/j.issn:0253-9993.2004.05.001
    [21] NEČAS D,KLAPETEK P. Gwyddion:An open−source software for SPM data analysis[J]. Central European Journal of Physics,2012,10(1):181−188.
    [22] SING K S W,EVERETT D H,HAUL R A W,et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry,1985,57(4):603−619.
    [23] GADELMAWLA E S,KOURA M M,MAKSOUD T M A,et al. Roughness parameters[J]. Journal of Materials Processing Technology,2002,123:133−145.
    [24] 琚宜文,姜波,侯泉林,等. 煤岩结构纳米级变形与变质变形环境的关系[J]. 科学通报,2005,50(17):1884−1892. JU Yiwen,JIANG Bo,HOU Quanlin,et al. Relationship between nano–scale deformation of coal rock structure and metamorphic deformation environment[J]. Chinese Science Bulletin,2005,50(17):1884−1892.. doi: 10.3321/j.issn:0023-074X.2005.17.016
    [25] 琚宜文,姜波,侯泉林,等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报,2005,79(2):269−285. JU Yiwen,JIANG Bo,HOU Quanlin,et al. Structual evolution of nano−scale pores of tectonic coals in southern North China and its mechanism[J]. Acta Geologica Sinica,2005,79(2):269−285.. doi: 10.3321/j.issn:0001-5717.2005.02.013
    [26] 琚宜文,李小诗. 构造煤超微结构研究新进展[J]. 自然科学进展,2009,19(2):131−140. JU Yiwen,LI Xiaoshi. New progress in the study of microstructure of deformed coal[J]. Progress in Natural Science,2009,19(2):131−140.. doi: 10.3321/j.issn:1002-008X.2009.02.002
    [27] BRUENING F A,COHEN A D. Measuring surface properties and oxidation of coal macerals using the atomic force microscope[J]. International Journal of Coal Geology,2005,63:195−204.
    [28] LIU Jiaxun,JIANG Xiumin,HUANG Xiangyong,et al. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle[J]. Fuel,2010,89:3884−3891.
    [29] MORGA R. Changes of semifusinite and fusinite surface roughness during heat treatment determined by atomic force microscopy[J]. International Journal of Coal Geology,2011,88:218−226.
    [30] WU Dun,LIU Guijian,SUN Ruoyu,et al. Influences of magmatic intrusion on the macromolecular and pore structures of coal:Evidences from Raman spectroscopy and atomic force microscopy[J]. Fuel,2014,119:191−201.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  19
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-10-14
  • 录用日期:  2022-03-18
  • 发布日期:  2022-05-25
  • 网络出版日期:  2022-05-05

目录

    /

    返回文章
    返回