留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂管网中瓦斯爆炸冲击波与火焰波传播实验研究

贾进章 王东明 牛鑫 李斌 朱金超 王枫潇

贾进章,王东明,牛鑫,等. 复杂管网中瓦斯爆炸冲击波与火焰波传播实验研究[J]. 煤田地质与勘探,2022,50(4):84−91. doi: 10.12363/issn.1001-1986.21.07.0373
引用本文: 贾进章,王东明,牛鑫,等. 复杂管网中瓦斯爆炸冲击波与火焰波传播实验研究[J]. 煤田地质与勘探,2022,50(4):84−91. doi: 10.12363/issn.1001-1986.21.07.0373
JIA Jinzhang,WANG Dongming,NIU Xin,et al. Propagation characteristics of flame wave and shock wave during the gas explosion in complex pipeline network[J]. Coal Geology & Exploration,2022,50(4):84−91. doi: 10.12363/issn.1001-1986.21.07.0373
Citation: JIA Jinzhang,WANG Dongming,NIU Xin,et al. Propagation characteristics of flame wave and shock wave during the gas explosion in complex pipeline network[J]. Coal Geology & Exploration,2022,50(4):84−91. doi: 10.12363/issn.1001-1986.21.07.0373

复杂管网中瓦斯爆炸冲击波与火焰波传播实验研究

doi: 10.12363/issn.1001-1986.21.07.0373
基金项目: 国家自然科学基金面上项目(52174183)
详细信息
    第一作者:

    贾进章,1974年生,男,河北石家庄人,博士,教授,博士生导师,从事矿井通风与瓦斯防治方面的研究. E-mail:jiajinzhang@163.com

    通信作者:

    王东明,1996年生,男,辽宁阜新人,硕士研究生,从事矿井通风与瓦斯防治方面的研究. E-mail:1084184485@qq.com

  • 中图分类号: X932

Propagation characteristics of flame wave and shock wave during the gas explosion in complex pipeline network

  • 摘要: 为了进一步探究瓦斯爆炸冲击波火焰波的传播特性,在自行设计并搭建的复杂管网中进行瓦斯爆炸实验。实验中利用高精度压力传感器和温度传感器收集压力变化和温度峰值数据;使用火焰传感器采集爆炸过程中出现的火焰波信号,根据理论公式计算得出火焰波传播速度;利用Origin软件对实验数据进行综合处理,研究复杂管网中瓦斯爆炸时的冲击波、火焰波传播特性。结果表明:管道内各测点最大压力峰值为0.599 MPa,最小压力峰值为0.297 MPa,管道内火焰波速度峰值为214.04 m/s,在管道L4上速度值降低为0 m/s,各测点温度峰值最大值为1 837 K,最小值为1 521 K。随着爆炸冲击波与火焰波在复杂管网内的传播距离不断增大,压力衰减趋势和速度突变趋势更为显著。

     

  • 图  实验系统

    Fig. 1  Experimental system

    图  实验系统实物

    Fig. 2  Physical picture of the experimental system

    图  实验系统各管道及测点

    Fig. 3  Schematic diagram of each pipe and measuring point in the experimental system

    图  各管道压力变化折线图

    Fig. 4  Line chart of pressure changes of each pipeline

    图  各测点火焰速度变化

    Fig. 5  Variation of flame velocity at each measuring point

    图  各测点温度峰值

    Fig. 6  Temperature peaks at each measuring point

    表  1  各测点等效坐标值

    Table  1  Equivalent coordinate values of each measuring point m

    测点T1T2T3T4T5T6T7T8T9
    测点坐标2.2,02.8,06.8,07.4,0.62.3,0.62.3,2.82.8,3.36.8,3.37.4,2.8
    下载: 导出CSV

    表  2  各监测点压力峰值原始实验数据

    Table  2  Original experimental data of peak pressure at each monitoring point

    管道测点距离爆炸源距离/m压力峰值/MPa均值/MPa
    L1T12.20.5960.6020.5890.599
    T22.80.5620.5310.5690.564
    T36.80.4780.4720.4730.476
    L2T52.90.5730.5790.5680.572
    T65.10.5120.5090.5120.515
    L3T48.00.3720.3760.3750.373
    T910.20.2940.2990.2980.297
    L4T76.10.4190.4250.4280.423
    T810.10.3450.3410.3430.342
    下载: 导出CSV

    表  3  冲击波在管网内各测点的压力衰减系数

    Table  3  Pressure attenuation factors of the shock wave at each measuring point in the pipe network

    冲击波
    路线
    测点测点与爆炸源距离/m压力峰
    值/MPa
    衰减系数
    k
    O-A-C-DT12.20.599
    T52.90.5721.058
    T65.10.5131.115
    T76.10.4231.214
    T810.10.3421.237
    O-A-B-DT12.20.599
    T22.80.5641.063
    T36.80.4761.196
    T48.00.3731.287
    T910.20.2971.266
    下载: 导出CSV

    表  4  各监测点火焰锋面到达时间原始实验数据

    Table  4  Original experimental data of the arrival time of the flame front at each monitoring point

    管道测点测点与爆炸源距离/m火焰到达时间/ms均值/ms
    L1T12.2174.45179.31175.94175.32
    T22.8179.13176.12179.11178.12
    T36.8208.06213.32210.51210.63
    L2T52.9178.82177.67120.21179.03
    T65.1198.88202.19203.49202.01
    L3T48.0247.86249.73247.97248.52
    T910.2367.47368.12371.41369.00
    L4T76.1247.07241.20247.48245.25
    T810.1
    下载: 导出CSV

    表  5  火焰波速度突变系数

    Table  5  Flame wave velocity change coefficient

    火焰波
    路线
    距离爆炸
    源距离/m
    速度/(m·s−1)突变
    系数γ
    O-A-C-D2.55175.42
    4.094.860.463
    5.623.370.755
    8.101
    O-A-B-D2.5214.04
    4.8123.040.425
    7.447.50.613
    9.118.260.618
    下载: 导出CSV
  • [1] 王博. 煤矿瓦斯煤尘爆炸冲击波传播的影响因素研究[D]. 太原: 中北大学, 2019.

    WANG Bo. Research on influencing factors of shock wave propagation of coal mine gas and coal dust explosion[D]. Taiyuan: North University of China, 2019.
    [2] 裴蓓,张子阳,潘荣锟,等. 不同强度冲击波诱导沉积煤尘爆炸火焰传播特性[J]. 煤炭学报,2021,46(2):498−506. PEI Bei,ZHANG Ziyang,PAN Rongkun,et al. Flame propagation characteristics of deposited coal dust explosion induced by shock waves of different intensities[J]. Journal of China Coal Society,2021,46(2):498−506.
    [3] 程磊. 受限空间煤尘爆炸冲击波传播衰减规律研究[D]. 焦作: 河南理工大学, 2011.

    CHENG Lei. Research on propagation law of shock wave of coal dust explosion in confined space[D]. Jiaozuo: Henan Polytechnic University, 2011.
    [4] WINGERDEN K V, BJERKETVEDT D, BAKKE J R, et al. Detonations in pipes and in the open[M]. St. Petersburg: Nuclear weapons and International law. Изд–во Иностранной лит, 1962.
    [5] EDWARDS D H,THOMAS G O,NETTLETON M A. The diffraction of a planar detonation wave at an abrupt area change[J]. Journal of Fluid Mechanics,1979,95(1):79−96.. doi: 10.1017/S002211207900135X
    [6] EDWARDS D H,FEARNLEY P,NETTLETON M A. Shock diffraction in channels with 90° bends[J]. Journal of Fluid Mechanics,1983,132:257−270.. doi: 10.1017/S0022112083001597
    [7] 陈慧慧. A型管道瓦斯爆炸冲击波和火焰传播实验研究[D]. 淮南: 安徽理工大学, 2019.

    CHEN Huihui. Type A pipe gas explosion shock wave and experimental study on flame propagation[D]. Huainan: Anhui University of Science and Technology, 2019.
    [8] 董铭鑫,赵东风,尹法波,等. 通风管网中瓦斯爆炸火焰波传播特性三维数值模拟[J]. 煤炭学报,2020,45(增刊1):291−299. DONG Mingxin,ZHAO Dongfeng,YIN Fabo,et al. Flame propagation characteristics of gas explosion in 3D ventilation pipe network by numerical simulation[J]. Journal of China Coal Society,2020,45(Sup.1):291−299.
    [9] 马恒,陈晓军,荆德吉. H型通风巷道瓦斯爆炸及泄爆过程模拟研究[J]. 中国安全科学学报,2021,31(1):45−51. MA Heng,CHEN Xiaojun,JING Deji. Simulation study on gas explosion and discharge process in H–type ventilation roadway[J]. China Safety Science Journal,2021,31(1):45−51.
    [10] 耿进军,许胜铭,景国勋,等. 非燃烧区瓦斯爆炸冲击波在单向分岔管道内传播规律的试验研究[J]. 安全与环境学报,2015,15(5):108−111. GENG Jinjun,XU Shengming,JING Guoxun,et al. Propagating regularity of the gas explosion shock waves at unidirectional bifurcation of pipeline in the non–combustion zone[J]. Journal of Safety and Environment,2015,15(5):108−111.
    [11] 付元. 瓦斯爆炸冲击波在管道中的传播特性研究[D]. 阜新: 辽宁工程技术大学, 2014.

    FU Yuan. Study on the propagation characteristics of gas explosion shock wave in laneway[D]. Fuxin: Liaoning Technical University, 2014.
    [12] 李鑫. 管道拐弯角度变化情况下瓦斯爆炸火焰传播规律研究[D]. 焦作: 河南理工大学, 2014.

    LI Xin. Regulation study on flame propagation of gas explosion with pipeline bend angle varying[D]. Jiaozuo: Henan Polytechnic University, 2014.
    [13] 祝钊. 管道瓦斯爆炸流场及其影响因素数值模拟研究[J]. 中国矿业大学学报,2017,46(2):300−305. ZHU Zhao. Numerical simulation of gas explosion flow field characteristics and influencing factors in pipelines[J]. Journal of China University of Mining & Technology,2017,46(2):300−305.
    [14] 翟成,林柏泉,叶青,等. 结构异常管路对瓦斯爆炸传播特性的影响[J]. 西安科技大学学报,2008,28(2):274−278. ZHAI Cheng,LIN Baiquan,YE Qing,et al. Influence of abnormal structure tube on gas explosion propagation characteristics[J]. Journal of Xi’an University of Science and Technology,2008,28(2):274−278.. doi: 10.3969/j.issn.1672-9315.2008.02.016
    [15] 孙豫敏. 基于管道异常特征的瓦斯爆炸传播特性研究[D]. 徐州: 中国矿业大学, 2015.

    SUN Yumin. Study on gas explosion propagation characteristics in abnormal structure tube[D]. Xuzhou: China University of Mining and Technology, 2015.
    [16] 解北京,杜玉晶,王亮. 分岔管道内瓦斯爆炸火焰传播规律实验及数值模拟[J]. 重庆大学学报,2019,42(6):69−77. XIE Beijing,DU Yujing,WANG Liang. Experimental and numerical simulation of gas propagation law of gas explosion flame in bifurcation pipeline[J]. Journal of Chongqing University,2019,42(6):69−77.. doi: 10.11835/j.issn.1000-582X.2019.06.008
    [17] 江丙友,刘泽功,林柏泉. 开口钢管内甲烷爆炸火焰厚度和压力发展特征[J]. 中国安全生产科学技术,2015,11(9):5−10. JIANG Bingyou,LIU Zegong,LIN Baiquan. Flame thickness and pressure development characteristics of methane explosion in an open steel pipe[J]. Journal of Safety Science and Technology,2015,11(9):5−10.
    [18] 翟成,林柏泉,菅从光. 瓦斯爆炸火焰波在分叉管路中的传播规律[J]. 中国安全科学学报,2005,15(6):69−72. ZHAI Cheng,LIN Baiquan,JIAN Congguang. Transmission rules of gas explosion flame in divaricated tube[J]. China Safety Science Journal,2005,15(6):69−72.. doi: 10.3969/j.issn.1003-3033.2005.06.016
    [19] ZHU Chuanjie,GAO Zishan,LU Ximiao,et al. Experimental study on the effect of bifurcations on the flame speed of premixed methane/air explosions in ducts[J]. Journal of Loss Prevention in the Process Industries,2017,49:545−550.. doi: 10.1016/j.jlp.2017.05.016
    [20] 郗雪辰,张树海,苟瑞君,等. 障碍物位置对瓦斯爆炸火焰传播影响的数值模拟[J]. 中北大学学报(自然科学版),2015,36(1):61−66. XI Xuechen,ZHANG Shuhai,GOU Ruijun,et al. Numerical simulation of the influence of obstacles position on flame propagation of gas explosion[J]. Journal of North University of China(Natural Science Edition),2015,36(1):61−66.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  25
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-11-26
  • 发布日期:  2022-04-25
  • 网络出版日期:  2022-04-16

目录

    /

    返回文章
    返回