留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能岩性识别的爆破岩体三维实体模型建立

陈应显 王鹏飞

陈应显,王鹏飞. 基于智能岩性识别的爆破岩体三维实体模型建立[J]. 煤田地质与勘探,2022,50(4):92−97. doi: 10.12363/issn.1001-1986.21.06.0340
引用本文: 陈应显,王鹏飞. 基于智能岩性识别的爆破岩体三维实体模型建立[J]. 煤田地质与勘探,2022,50(4):92−97. doi: 10.12363/issn.1001-1986.21.06.0340
CHEN Yingxian,WANG Pengfei. Establishment of a 3D solid model blasting rock mass based on intelligent lithology identification[J]. Coal Geology & Exploration,2022,50(4):92−97. doi: 10.12363/issn.1001-1986.21.06.0340
Citation: CHEN Yingxian,WANG Pengfei. Establishment of a 3D solid model blasting rock mass based on intelligent lithology identification[J]. Coal Geology & Exploration,2022,50(4):92−97. doi: 10.12363/issn.1001-1986.21.06.0340

基于智能岩性识别的爆破岩体三维实体模型建立

doi: 10.12363/issn.1001-1986.21.06.0340
基金项目: 国家自然科学基金项目(51974144,51874160);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-01)
详细信息
    第一作者:

    陈应显,1975年生,男,四川中江人,博士,副教授,从事露天开采和数字矿山的教学与研究工作. E-mail:lntucyx@163.com

    通信作者:

    王鹏飞,1998年生,男,山东青岛人,硕士研究生,从事露天开采和数字矿山的研究工作. E-mail:1098219700@qq.com

  • 中图分类号: TD05

Establishment of a 3D solid model blasting rock mass based on intelligent lithology identification

  • 摘要: 随着智能钻机的研发和使用,能够准确地获得爆破钻孔的岩性数据。通过建立炮孔数据库对智能识别的炮孔数据进行存储和管理;以炮孔岩性数据为样本,使用距离平方反比法对爆破区域范围内的实体单元进行插值,生成爆破岩体三维实体模型;使用爆破区域范围多边形和采场三角网先后对岩体三维实体模型进行裁切,得到裁切后的爆破岩体三维实体模型。使用C++编程实现爆破岩体三维实体模型建立的所有过程,以内蒙古锡林浩特某露天矿918平盘爆破为应用实例,建立该爆破区域的岩体三维实体模型。通过该爆破岩体三维实体模型计算炮孔装药量,与单孔岩性计算炮孔装药量结果进行对比,结果表明,通过三维岩体模型计算炮孔装药量有效地降低了爆破成本,提高了爆破效率。

     

  • 图  数据表之间的关系

    Fig. 1  Relationship of data table

    图  爆破作业范围

    Fig. 2  Blasting operation scope

    图  作业范围内炮孔位置

    Fig. 3  Blast hole location in operation range

    图  单一炮孔三维柱状图

    Fig. 4  Three dimensional histogram of single blast hole

    图  爆破炮孔三维柱状图

    Fig. 5  Three dimensional columnar shape of blasting hole

    图  插值三维实体模型程序界面

    Fig. 6  Program interface of interpolation 3D solid model

    图  插值三维实体模型

    Fig. 7  Three dimensional interpolation solid model

    图  爆破范围多边形裁切三维实体模型

    Fig. 8  3D solid model of polygon cutting in blasting range

    图  采场表面三角网

    Fig. 9  Surface triangulation of the bench

    图  10  爆破三维实体模型

    Fig. 10  Blasting 3D solid model

    表  1  炮孔数据

    Table  1  Blast hole data

    O;"9";"1.炮孔编号:0620171118170059 "
    O;"9";"2.钻机状态:2 "
    O;"9";"3.钻机号:6 "
    O;"9";"4开机时间:20171118170059 "
    O;"9";"5.经度:115°59′52.0 ″"
    O;"9";"6.纬度:44°0′2.0 ″"
    O;"9";"7.高程:940.46 m"
    O;"9";"8.炮孔编号:0620171118170059 "
    O;"9";"9.炮孔深度:401 cm"
    O;"9";"10.回转速度:120 r/min"
    O;"9";"11.回转压差:6.2 MPa"
    O;"9";"12.加压压力1:4.3 MPa"
    O;"9";"13.加压压力2:0.7MPa"
    O;"9";"14.钻进速度:4 cm/s"
    O;"9";"15.风压:0.4 MPa"
    O;"9";"16.识别岩性:1"
    下载: 导出CSV

    表  2  数据库中的炮孔基本信息

    Table  2  Basic information table of blast hole in database

    炮孔号经度纬度X/mY/mZ/m开机时间
    ZK2023116°0′15.0″43°59′48.0″19477.4874464.33916.612018-09-13 10:10
    ZK2024116°0′17.0″43°59′48.0″19480.1774458.97916.192018-09-13 10:10
    ZK2025116°0′14.0″43°59′48.0″19482.8574453.60916.032018-09-13 10:10
    ZK2026116°0′12.0″43°59′49.0″19485.5474448.24915.972018-09-13 10:10
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    ZK2027116°0′15.0″43°59′49.0″19488.2274442.87916.082018-09-13 10:10
    下载: 导出CSV

    表  3  数据库中的炮孔数据

    Table  3  Data table of blast hole in database

    序号炮孔号炮孔深度/
    m
    回转速度/
    (r·min−1)
    回转压差/
    MPa
    加压压力1/
    MPa
    加压压力2/
    MPa
    钻进速度/
    (cm·s−1)
    风压/
    MPa
    识别岩性深度顺序
    25971ZK202316.62905543765321
    25972ZK20234.6875463073431
    25973ZK20235.04105554087432
    25974ZK20235.37120393073433
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    25975ZK20235.7490494076554
    下载: 导出CSV

    表  4  数据库中的岩性数据

    Table  4  Lithology data table in database

    层号岩性识别
    1泥岩
    2粉(细)砂岩
    3砂质泥岩或泥质砂岩
    4粗砂岩
    5炭质泥岩
    6
    7钙质或硅质胶结砾岩
    下载: 导出CSV
  • [1] 李志成, 夏阳. 露天开采[M]. 昆明: 云南大学出版社, 2009.
    [2] 杨永琦. 矿山爆破技术与安全[M]. 北京: 煤炭工业出版社, 1991.
    [3] 冀晓伟. 露天矿台阶爆破三维数字化设计系统研究[D]. 西安: 西安建筑科技大学, 2011.

    JI Xiaowei. Research on 3D digitization bench blasting design system of open–pit mine[D]. Xi’an: Xi’an University of Architecture and Technology, 2011.
    [4] 吴立新,殷作如,邓智毅,等. 论21世纪的矿山:数字矿山[J]. 煤炭学报,2000,25(4):337−342. WU Lixin,YIN Zuoru,DEND Zhiyi,et al. Research to the mine in the 21st century:Digital mine[J]. Journal of China Coal Society,2000,25(4):337−342.. doi: 10.3321/j.issn:0253-9993.2000.04.001
    [5] 张志毅,杨年华,卢文波,等. 中国爆破振动控制技术的新进展[J]. 爆破,2013,30(2):25−32. ZHANG Zhiyi,YANG Nianhua,LU Wenbo,et al. Progress of blasting vibration control technology in China[J]. Blasting,2013,30(2):25−32.. doi: 10.3963/j.issn.1001-487X.2013.02.006
    [6] 段云,熊代余,徐国权. 钻孔数字化与钻孔岩性自动识别技术[J]. 金属矿山,2015(10):125−129. DUAN Yun,XIONG Daiyu,XU Guoquan. A new technology for digital drilling and automatic lithology identification[J]. Metal Mine,2015(10):125−129.. doi: 10.3969/j.issn.1001-1250.2015.10.027
    [7] 李明超,符家科,张野,等. 耦合岩石图像与锤击音频的岩性分类智能识别分析方法[J]. 岩石力学与工程学报,2020,39(5):996−1004. LI Mingchao,FU Jiake,ZHANG Ye,et al. Intelligent recognition and analysis method of rock lithology classification based on coupled rock images and hammering audios[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(5):996−1004.
    [8] 韩启迪,张小桐,申维. 基于梯度提升决策树(GBDT)算法的岩性识别技术[J]. 矿物岩石地球化学通报,2018,37(6):1173−1180. HAN Qidi,ZHANG Xiaotong,SHEN Wei. Lithology identification technology based on gradient boosting decision tree(GBDT) algorithm[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2018,37(6):1173−1180.
    [9] SONG Renbo,QIN Xiaoqian,TAO Yeqing,et al. A semi−automatic method for 3D modeling and visualizing complex geological bodies[J]. Bulletin of Engineering Geology and the Environment,2019,78(3):1371−1383.. doi: 10.1007/s10064-018-1244-3
    [10] CHE Defu,JIA Qingren. Three−dimensional geological modeling of coal seams using weighted Kriging method and multi−source data[J]. IEEE Access,2019(99):1.
    [11] 李璐,刘新根,吴蔚博. 基于钻孔数据的三维地层建模关键技术[J]. 岩土力学,2018,39(3):1056−1062. LI Lu,LIU Xingen,WU Weibo. Key technology of 3D stratum modelling based on borehole data[J]. Rock and Soil Mechanics,2018,39(3):1056−1062.
    [12] 贾立娟. 基于钻孔数据的三维地质建模插值算法研究[D]. 北京: 中国地质大学(北京), 2018.

    JIA Lijuan. Research on 3D geological modeling interpolation algorithm based on drilling data[D]. Beijing: China University of Geosciences(Beijing), 2018.
    [13] 唐丙寅,吴冲龙,李新川,等. 一种基于钻孔地质数据的快速递进三维地质建模方法[J]. 岩土力学,2015,36(12):3633−3638. TANG Bingyin,WU Chonglong,LI Xinchuan,et al. A fast progressive 3D geological modeling method based on borehole data[J]. Rock and Soil Mechanics,2015,36(12):3633−3638.
    [14] 任占营. 露天矿爆破智能设计与模拟优化系统研发与应用研究[D]. 北京: 中国矿业大学(北京), 2016.

    REN Zhanying. Research on the development and application of open pit mine intelligent design and simulative optimization system[D]. Beijing: China University of Mining and Technology(Beijing), 2016.
    [15] 邹林志,任光明,杨曦璃. 基于ArcGIS空间插值分析的三维地质可视化[J]. 世界有色金属,2020(19):195−196. ZOU Linzhi,REN Guangming,YANG Xili. Research of 3D geological visualization method based on ArcGIS space interpolation analysis[J]. World Nonferrous Metals,2020(19):195−196.. doi: 10.3969/j.issn.1002-5065.2020.19.094
    [16] 张琳娜,樊隽轩,侯旭东,等. 地层数据的常用空间插值方法介绍和比较分析:以上扬子区宝塔组厚度重建为例[J]. 地层学杂志,2016,40(4):420−428. ZHANG Linna,FAN Junxuan,HOU Xudong,et al. Comparison of common spatial interpolation methods in stratigraphic data analysis:A case study of the stratigraphic thickness of the Ordovician pagoda formation in the upper Yangtze region[J]. Journal of Stratigraphy,2016,40(4):420−428.
    [17] 孙梦楠,刘少华,刘京城. 顾及空间各向异性的IDW插值算法[J]. 计算机工程与设计,2020,41(4):983−987. SUN Mengnan,LIU Shaohua,LIU Jingcheng. IDW interpolation algorithm considering spatial anisotropy[J]. Computer Engineering and Design,2020,41(4):983−987.
    [18] 房鹏,陈丽钧. 三维空间属性体克里金插值方法的研究[J]. 电脑知识与技术,2020,16(1):231−232. FANG Peng,CHEN Lijun. Research on Kriging interpolation method of 3D spatial attribute volume[J]. Computer Knowledge and Technology,2020,16(1):231−232.
    [19] 冯波,陈明涛,岳冬冬,等. 基于两种插值算法的三维地质建模对比[J]. 吉林大学学报(地球科学版),2019,49(4):1200−1208. FENG Bo,CHEN Mingtao,YUE Dongdong,et al. Comparison of 3D geological modeling based on two different interpolation methods[J]. Journal of Jilin University(Earth Science Edition),2019,49(4):1200−1208.
    [20] 田维. 基于距离幂反比法的新疆黄土坡铜锌矿品位估算应用研究[J]. 中国矿山工程,2018,47(5):14−18. TIAN Wei. Application study of ore grade estimation based on distance power inverse ratio method in Xinjiang Huangtupo copper and zinc mine[J]. China Mine Engineering,2018,47(5):14−18.. doi: 10.3969/j.issn.1672-609X.2018.05.005
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  15
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-09-18
  • 发布日期:  2022-04-25
  • 网络出版日期:  2022-04-21

目录

    /

    返回文章
    返回