留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下钻孔内瓦斯浓度监测传感器研制

丛琳

丛琳.煤矿井下钻孔内瓦斯浓度监测传感器研制[J].煤田地质与勘探,2022,50(2):150−155. doi: 10.12363/issn.1001-1986.21.05.0277
引用本文: 丛琳.煤矿井下钻孔内瓦斯浓度监测传感器研制[J].煤田地质与勘探,2022,50(2):150−155. doi: 10.12363/issn.1001-1986.21.05.0277
CONG Lin.Development of a methane concentration monitoring sensor in underground boreholes of coal mines[J].Coal Geology & Exploration,2022,50(2):150−155. doi: 10.12363/issn.1001-1986.21.05.0277
Citation: CONG Lin.Development of a methane concentration monitoring sensor in underground boreholes of coal mines[J].Coal Geology & Exploration,2022,50(2):150−155. doi: 10.12363/issn.1001-1986.21.05.0277

煤矿井下钻孔内瓦斯浓度监测传感器研制

doi: 10.12363/issn.1001-1986.21.05.0277
基金项目: 陕西省自然科学基础研究计划项目(2021JQ-949);国家自然科学基金面上项目(42074175)
详细信息
    第一作者:

    丛琳,1990年生,女,山东威海人,硕士,从事物探仪器研发工作. E-mail:conglin@cctegxian.com

  • 中图分类号: V249

Development of a methane concentration monitoring sensor in underground boreholes of coal mines

  • 摘要: 当前,煤矿井下钻孔作业时,瓦斯监测系统只能反映钻孔孔口处瓦斯抽采量,无法获得钻孔内某个区段的瓦斯抽采效果, 随着煤矿井下瓦斯抽采钻孔孔深增加,沿钻孔长度方向瓦斯抽采效果出现明显分区,不同孔深处有效抽采半径出现较大差异,导致煤矿井下瓦斯抽采钻孔布置难度较大,不确定性增加。针对此问题,设计一种煤矿井下钻孔内瓦斯浓度监测传感器,该传感器基于可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)原理,可实现钻孔内多点同时在线监测,保证了孔内无源,实现了本质安全。首先,分析TDLAS瓦斯测量基本原理,从气体分子吸收光谱原理出发,介绍了激光光源的选择,并根据比尔−朗伯定律推算瓦斯气体浓度解算公式。然后,在此基础上进行瓦斯浓度监测传感器设计,包括光程设计、结构设计、保护工艺设计和孔中操作流程4方面。最后,从性能和可靠性2方面出发,进行相对误差测试、稳定性测试、响应时间测试、与非色散红外传感器性能对比和防水防尘测试。设计的瓦斯浓度监测传感器直径40 mm,长度80 mm,传感器本质安全,结构上能够很好地适用于煤矿井下钻孔内应用。性能测试中,传感器全量程最大相对误差2.8%,小于孔内瓦斯浓度±6%的监测标准;稳定性测试中,传感器数据的波动范围在0.015%,稳定性为0.28%,满足稳定性小于1%的要求;传感器的响应时间约为8 s,满足响应时间小于10 s的要求;与非色散红外传感器对比测试中,设计的TDLAS瓦斯浓度监测传感器的相对误差和响应时间都明显优于非色散红外传感器。可靠性测试中,传感器长时间处于高湿度环境中,其测量精度并未受到影响,保护工艺可有效防水。性能测试和可靠性测试结果表明,瓦斯浓度监测传感器能够很好地满足孔内瓦斯浓度监测需求,在煤矿井下孔中监测方面具有很好的应用前景。

     

  • 图  瓦斯吸收光谱

    Fig. 1  Methane absorption spectrum

    图  不同光程长度下瓦斯体积分数与光透过率的关系曲线

    Fig. 2  Relationship curves of methane concentration and transmittance under different optical path lengths

    图  瓦斯浓度监测传感器结构

    Fig. 3  Structure design of the methane concentration monitoring sensor

    图  传感器光路传输

    Fig. 4  Optical path transmission of the sensor

    图  瓦斯浓度监测传感器实物

    Fig. 5  The methane concentration monitoring sensor

    图  稳定性测试曲线

    Fig. 6  Stability test curve

    图  响应时间测试曲线

    Fig. 7  Response time test curve

    图  防水可靠性测试曲线

    Fig. 8  Waterproof reliability test curves

    表  1  煤矿井下瓦斯监测需求

    Table  1  Demand for methane monitoring of coal mines

    相对误差稳定性/%响应时间/s
    不高于CH4真值的±6%≤1≤10
    下载: 导出CSV

    表  2  全量程相对误差测试

    Table  2  Full range relative error test

    传感器不同标准气体下相对误差/%
    0.5%8.5%20%35%60%85%
    12.51.001.50.230.380.62
    22.51.101.50.060.130.90
    32.50.901.50.100.350.67
    42.50.901.20.120.310.71
    52.30.901.50.120.290.89
    62.80.851.30.050.190.92
    下载: 导出CSV

    表  3  传感器性能对比

    Table  3  Performance comparison of the sensors

    传感器
    类型
    相对误差/
    %
    稳定性/
    %
    响应时间/
    s
    非色散红外5.00.0530
    TDLAS2.80.288
    下载: 导出CSV
  • [1] 高春矿. 煤矿安全监控系统的现状与发展前景[J]. 煤炭技术,2004,23(11):65−66.. doi: 10.3969/j.issn.1008-8725.2004.11.040

    GAO Chunkuang. Status quo and development prospects of coal mine safety monitoring system[J]. Coal Technology,2004,23(11):65−66.. doi: 10.3969/j.issn.1008-8725.2004.11.040
    [2] 代晨昱. 矿用钻孔瓦斯抽采多参数监测系统与装置[J]. 煤田地质与勘探,2020,48(5):190−196.. doi: 10.3969/j.issn.1001-1986.2020.05.023

    DAI Chenyu. Multi parameter monitoring system and device for mine gas drainage[J]. Coal Geology & Exploration,2020,48(5):190−196.. doi: 10.3969/j.issn.1001-1986.2020.05.023
    [3] 王瑞海. 基于四级联网模式的煤矿安全生产综合监管系统设计及应用[J]. 煤炭工程,2014,46(8):133−135.. doi: 10.11799/ce201408042

    WANG Ruihai. Design and application on integrated monitoring system of coal mine safety production based on four–level network[J]. Coal Engineering,2014,46(8):133−135.. doi: 10.11799/ce201408042
    [4] 刘君. 矿井瓦斯监测管控系统设计[J]. 机电工程技术,2019,48(9):215−216.. doi: 10.3969/j.issn.1009-9492.2019.09.071

    LIU Jun. Design of mine gas monitoring management and control system[J]. Mechanical & Electrical Engineering Technology,2019,48(9):215−216.. doi: 10.3969/j.issn.1009-9492.2019.09.071
    [5] 王志权. 综采工作面瓦斯涌出分布特征及影响因素分析[J]. 煤炭技术,2012,31(3):125−127.. doi: 10.3969/j.issn.1008-8725.2012.03.055

    WANG Zhiquan. Influence factors and distribution characteristics of gas emission in fully−mechanized coal working face[J]. Coal Technology,2012,31(3):125−127.. doi: 10.3969/j.issn.1008-8725.2012.03.055
    [6] 吴响. 煤矿瓦斯场分布演化规律及其时空建模研究[D]. 徐州: 中国矿业大学, 2014.

    WU Xiang. Study on the evolution law of coal mine gas distribution field and its spatio−temporal modeling[D]. Xuzhou: China University of Mining and Technology, 2014.
    [7] 刘永强. 基于TDLAS的分布式激光甲烷监控系统研究[J]. 矿冶,2018,27(4):50−54.. doi: 10.3969/j.issn.1005-7854.2018.04.011

    LIU Yongqiang. Research on distributed laser methane monitoring system based on TDLAS[J]. Mining & Metallurgy,2018,27(4):50−54.. doi: 10.3969/j.issn.1005-7854.2018.04.011
    [8] 王燕,张锐. 光电探测器特性在TDLAS气体检测中的影响[J]. 光学学报,2016,36(2):0230002.. doi: 10.3788/AOS201636.0230002

    WANG Yan,ZHANG Rui. Photo detector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica,2016,36(2):0230002.. doi: 10.3788/AOS201636.0230002
    [9] 宋俊玲,洪延姬,王广宇,等. 基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究[J]. 物理学报,2012,61(24):240702.. doi: 10.7498/aps.61.240702

    SONG Junling,HONG Yanji,WANG Guangyu,et al. Two−dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy[J]. Acta Physical Sinica,2012,61(24):240702.. doi: 10.7498/aps.61.240702
    [10] ROTHMAN L S,GORDON I E,BARBE A,et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2009,110(9/10):533−572.
    [11] ARROYO M P,HANSON R K. Absorption measurements of water−vapor concentration, temperature, and line−shape parameters using a tunable InGaAsP diode laser[J]. Applied Optics,1993,32(30):6104−6116.. doi: 10.1364/AO.32.006104
    [12] 章蓬伟. 基于红外吸收原理的甲烷浓度检测的实验研究[D]. 秦皇岛: 燕山大学, 2013.

    ZHANG Pengwei. The research of methane concentration detecting system based on infrared absorption theory[D]. Qinhuangdao: Yanshan University, 2013.
    [13] 李童童,童紫原,唐守锋,等. 煤矿井下瓦斯浓度检测方法综述[J]. 现代矿业,2018(5):13−17.. doi: 10.3969/j.issn.1674-6082.2018.05.003

    LI Tongtong,TONG Ziyuan,TANG Shoufeng,et al. Review on the detection methods of gas concentration in underground coal mine[J]. Modern Mining,2018(5):13−17.. doi: 10.3969/j.issn.1674-6082.2018.05.003
    [14] 卢雨,印新达,于本化,等. 基于TDLAS的时分复用型甲烷多点监测系统[J]. 电子测试,2014,23:42−44.. doi: 10.3969/j.issn.1000-8519.2014.16.019

    LU Yu,YIN Xinda,YU Benhua,et al. A multipoint methane sensing system of Time division multiplexing based on TDLAS[J]. Electronic Test,2014,23:42−44.. doi: 10.3969/j.issn.1000-8519.2014.16.019
    [15] 陈强强. 基于TDLAS煤矿瓦斯浓度监测系统的研究[D]. 西安: 西安科技大学, 2013.

    CHEN Qiangqiang. Study on mine gas concentration monitoring system based on TDLAS[D]. Xi’an: Xi’an University of Science and Technology, 2013.
    [16] 武婧. 吸收型光纤气体传感器气室设计概况[J]. 中国高新技术企业,2009(11):18−19.. doi: 10.3969/j.issn.1009-2374.2009.11.011

    WU Jing. Design overview of absorption fiber optic gas sensor gas chamber[J]. Chinese Hi−tech Enterprises,2009(11):18−19.. doi: 10.3969/j.issn.1009-2374.2009.11.011
    [17] 李蓉蓉,余震虹,张显杰,等. 基于光谱吸收CH4传感器灵敏度的分析[J]. 现代电子技术,2013,36(18):142−143.. doi: 10.3969/j.issn.1004-373X.2013.18.043

    LI Rongrong,YU Zhenhong,ZHANG Xianjie,et al. Analysis of CH4 sensor sensitivity based on spectral absorption[J]. Modern Electronics Technique,2013,36(18):142−143.. doi: 10.3969/j.issn.1004-373X.2013.18.043
    [18] 魏玉宾. 光纤气体传感器及其安全工程应用中的关键技术研究[D]. 济南: 山东大学, 2016.

    WEI Yubin. Research on key technologies of optical fiber gas sensor and its application in safety engineering[D]. Jinan: Shandong University, 2016.
    [19] 王玮琪. 高精度红外多气体传感器吸收池的研究与设计[D]. 长春: 吉林大学, 2014.

    WANG Weiqi. Research and design of high precision infrared absorption multi−gas sensor[D]. Changchun: Jilin University, 2014.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  122
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2021-09-02
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-02-15

目录

    /

    返回文章
    返回