留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源数据挖掘下潘谢矿区深部灰岩水突水预警研究

毕波 陈永春 谢毫 安士凯 徐燕飞

毕波,陈永春,谢毫,等.多源数据挖掘下潘谢矿区深部灰岩水突水预警研究[J].煤田地质与勘探,2022,50(2):81−88. doi: 10.12363/issn.1001-1986.21.04.0161
引用本文: 毕波,陈永春,谢毫,等.多源数据挖掘下潘谢矿区深部灰岩水突水预警研究[J].煤田地质与勘探,2022,50(2):81−88. doi: 10.12363/issn.1001-1986.21.04.0161
BI Bo,CHEN Yongchun,XIE Hao,et al.Water inrush warning system of deep limestone in Panxie Mining Area based on multi-source data mining[J].Coal Geology & Exploration,2022,50(2):81−88. doi: 10.12363/issn.1001-1986.21.04.0161
Citation: BI Bo,CHEN Yongchun,XIE Hao,et al.Water inrush warning system of deep limestone in Panxie Mining Area based on multi-source data mining[J].Coal Geology & Exploration,2022,50(2):81−88. doi: 10.12363/issn.1001-1986.21.04.0161

多源数据挖掘下潘谢矿区深部灰岩水突水预警研究

doi: 10.12363/issn.1001-1986.21.04.0161
基金项目: 安徽省自然科学基金项目(2108085QE209);安徽省科技重大专项项目(17030901023);淮南市重点研究与开发计划项目(2021A05)
详细信息
    第一作者:

    毕波,1984年生,男,辽宁葫芦岛人,硕士,高级工程师,从事煤矿灾害防治工作. E-mail:417785981@qq.com

  • 中图分类号: TD745+.2

Water inrush warning system of deep limestone in Panxie Mining Area based on multi-source data mining

  • 摘要: 深层灰岩水在长时间水岩耦合作用下各含水层的水化学成分有所不同,但随着地壳运动、采动影响等因素导致不同含水层产生水力联系。重大的突水事故都是深层高压灰岩水以浅层灰岩水为通道突入矿井发生的。依据对淮南煤田潘谢矿区9对矿井2015—2018年182个地面水文观测孔的水位数据及潘二矿突水后各水文观测孔水位变化的时空规律,得出水文观测孔的水位变化数据比水位高程数据更灵敏,潘谢矿区深层灰岩水由下向上对浅层灰岩水进行补给,通过聚类分析算法识别出矿井与深层灰岩水存在补给关系的浅层灰岩含水层区域;另一方面基于改进的随机森林算法对收集的7 000多条矿井水质化验资料进行分析,基于错分数据识别出与深层灰岩水水力联系紧密的各矿含水层信息。综合分析水位变化数据聚类分析结果,得出各矿井的突水风险区域。基于含水层分类显著因子、水化学空间分布特征,结合温度、流量、水位、水质等参数的高精度传感器,构建快速准确突水预警系统,对矿井出水点进行智能监测,为实施防治水措施提供快速、可靠的依据,可以极大地避免矿井发生突水事故和减少突水事故产生的损失。

     

  • 图  潘谢矿区地面水文观测孔布置及突水后水位变化

    Fig. 1  Water level changes of hydrological observation holes in Ordovician and Cambrian after water inrush

    图  灰岩水文观测孔突水前后水位变化与距突水点距离散点图

    Fig. 2  Scatter plots of water level changes and distances from water inrush point before and after water inrush in the limestone hydrological observation holes

    图  水文观测孔聚类分析

    Fig. 3  Cluster analysis of hydraulic observational pores

    图  含水层的常规离子分布

    Fig. 4  Conventional ion distribution of the aquifer

    图  灰岩水突水危险识别与预警系统

    Fig. 5  Risk identification and early warning system for limestone water inrush

    表  1  突水前后地面水文观测孔水位变化统计

    Table  1  Statistical table of water level changes in surface hydrological observation holes before and after water inrush

    煤矿新生界松散层含水层太原组灰岩含水层奥陶系、寒武系灰岩含水层
    水位变化/m水位高程/m水位变化/m水位高程/m水位变化/m水位高程/m
    潘二矿–0.1~1.7/0.47.9–20~84/49–253313.0~377.0/346.0–40
    潘一矿–0.4~1.3/0.36.210~146/58–193353.0–33
    潘北矿0.4~0.4/0.411.022~83/58–7177.0~185.0/101.0–25
    潘三矿0~1.0/0.4–4.30~72/5–145–5.8~77.0/55.0–29
    丁集矿–0.2~1.4/0.711.00~12726.0–13
    顾桥矿–0.1~2.4/0.73.74~5–84.0~5.1/4.6–8
    顾北矿0.2~2.7/1.214.00~6/221.9~2.6/2.22
    张集矿0.1~3.4/1.411.0–5~6/1–1020.1~4.7/2.4–7
    谢桥矿0~3.2/1.211.0–16~2/–2–820.8~2.3/1.72
      注:–0.1~1.7/0.4表示最小~最大值/平均值,其他同。
    下载: 导出CSV

    表  2  水样各参数对于分类的贡献值

    Table  2  Contribution rate of each parameter of water samples to classification

    项目贡献值
    Cl矿井类别Na++K+Ca2+采样年限SO4 2−HCO3 Mg2+CO3 2−pH
    奥灰水0.200.270.180.200.170.260.140.120.070.07
    砂岩水0.090.080.050.070.040.040.050.060.010.01
    松散层水0.160.100.230.110.100.100.160.080.050.04
    太灰水0.240.190.190.110.150.110.110.070.040.05
    MDA0.150.130.120.100.090.090.090.070.030.03
    MDG11510510174647176583230
    下载: 导出CSV

    表  3  随机森林分类结果混淆矩阵

    Table  3  Confusion matrix of random forest classification results

    项目奥灰水砂岩水太灰水松散层水
    奥灰水1435010
    砂岩水2594921
    太灰水0131463
    松散层水1832264
    下载: 导出CSV
  • [1] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295−305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295−305.
    [2] 徐静,谭章禄. 智慧矿山系统工程与关键技术探讨[J]. 煤炭科学技术,2014,42(4):79−82.

    XU Jing,TAN Zhanglu. Smart mine system engineering and discussion of its key technology[J]. Coal Science and Technology,2014,42(4):79−82.
    [3] 吴立新,殷作如,钟亚平. 再论数字矿山:特征、框架与关键技术[J]. 煤炭学报,2003,28(1):1−7.. doi: 10.3321/j.issn:0253-9993.2003.01.001

    WU Lixin,YIN Zuoru,ZHONG Yaping. Restudy on digital mine:Characteristics,framework and key technologies[J]. Journal of China Coal Society,2003,28(1):1−7.. doi: 10.3321/j.issn:0253-9993.2003.01.001
    [4] 毛善君. “高科技煤矿”信息化建设的战略思考及关键技术[J]. 煤炭学报,2014,39(8):1572−1583.

    MAO Shanjun. Strategic thinking and key technology of informatization construction of high–tech coal mine[J]. Journal of China Coal Society,2014,39(8):1572−1583.
    [5] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.

    WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
    [6] 储婷婷. 潘谢矿区地下水常规水化学分析及判别模式的建立[D]. 合肥: 中国科学技术大学, 2014.

    CHU Tingting. Conventional hydrochemical analysis and establishment of discriminant model for groundwater system in Panxie mining area[D]. Hefei: University of Science and Technology of China, 2014.
    [7] 李垣志,牛国庆,刘慧玲. 改进的GA–BP神经网络在矿井突水水源判别中的应用[J]. 中国安全生产科学技术,2016,12(7):77−81.

    LI Yuanzhi,NIU Guoqing,LIU Huiling. Application of improved GA–BP neural network on identification of water inrush source in mine[J]. Journal of Safety Science and Technology,2016,12(7):77−81.
    [8] 徐星,郭兵兵,王公忠. 人工神经网络在矿井多水源识别中的应用[J]. 中国安全生产科学技术,2016,12(1):181−185.

    XU Xing,GUO Bingbing,WANG Gongzhong. Application of artificial neural network for recognition of multiple water sources in mine[J]. Journal of Safety Science and Technology,2016,12(1):181−185.
    [9] 杨建,刘基,靳德武,等. 有机–无机联合矿井突水水源判别方法[J]. 煤炭学报,2018,43(10):2886−2894.

    YANG Jian,LIU Ji,JIN Dewu,et al. Method of determining mine water inrush source based on combination of organic−inorganic water chemistry[J]. Journal of China Coal Society,2018,43(10):2886−2894.
    [10] 闫鹏程. 基于激光诱导荧光技术的煤矿突水水源识别模型研究[D]. 淮南: 安徽理工大学, 2016.

    YAN Pengcheng. Research on source determination of mine water inrush based on laser induced fluorescence technology[D]. Huainan: Anhui University of Science and Technology, 2016.
    [11] 刘剑民,王继仁,刘银朋,等. 基于水化学分析的煤矿矿井突水水源判别[J]. 安全与环境学报,2015,15(1):31−35.

    LIU Jianmin,WANG Jiren,LIU Yinpeng,et al. Hydrochemistry analysis based on the source determination of coal mine water−bursts[J]. Journal of Safety and Environment,2015,15(1):31−35.
    [12] 王心义,赵伟,刘小满,等. 基于熵权–模糊可变集理论的煤矿井突水水源识别[J]. 煤炭学报,2017,42(9):2433−2439.

    WANG Xinyi,ZHAO Wei,LIU Xiaoman,et al. Identification of water inrush source from coalfield based on entropy weight−fuzzy variable set theory[J]. Journal of China Coal Society,2017,42(9):2433−2439.
    [13] 黄平华,陈建生. 基于多元统计分析的矿井突水水源 Fisher识别及混合模型[J]. 煤炭学报,2011,36(增刊1):131−136.

    HUANG Pinghua,CHEN Jiansheng. Fisher indentify and mixing model based on multivariate statistical analysis of mine water inrush sources[J]. Journal of China Coal Society,2011,36(Sup.1):131−136.
    [14] 武强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013,38(4):561−565.

    WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561−565.
    [15] 张俊,李余生,林曼利,等. 淮南张集矿水文地球化学特征及水源识别[J]. 水文地质工程地质,2014,41(6):32−37.

    ZHANG Jun,LI Yusheng,LIN Manli,et al. Hydrogeochemistry characteristics and source identification: A case study in the Zhangji Coal Mine in Huainan[J]. Hydrogeology and Engineering Geology,2014,41(6):32−37.
    [16] 张丹丹. 淮南矿区水化学特征及水源判别模型研究[D]. 淮南: 安徽理工大学, 2017.

    ZHANG Dandan. Study on water chemistry characteristics and water source discrimination model in Huainan mining area[D]. Huainan: Anhui University of Science and Technology, 2017.
    [17] 王浪. 采动影响下谢桥煤矿地下水动态变化特征及模拟研究[D]. 合肥: 合肥工业大学, 2016.

    WANG Lang. The groundwater dynamic change characteristics and simulation studies under the influence of mining in Xieqiao mine[D]. Hefei: Hefei University of Technology, 2016.
    [18] 刘勇. 基于随机森林分类器的Φ–OTDR传感系统模式识别研究[D]. 北京: 北京交通大学, 2018.

    LIU Yong. Investigation on pattern recognition based on random forest classifier for phase−sensitive Φ−OTDR sensing system[D]. Beijing: Beijing Jiaotong University, 2018.
    [19] 王琳琳. 说话人识别中的时变鲁棒性问题研究[D]. 北京: 清华大学, 2013.

    WANG Linlin. Research on time–varying robustness in speaker recognition[D]. Beijing: Tsinghua University, 2013.
    [20] 齐瑞. 淮南潘北矿水化学特征分析及突水水源判别模型[D]. 淮南: 安徽理工大学, 2018.

    QI Rui. Huainan Panbei mine water chemical characteristics analysis and discriminating model of water inrush source[D]. Beijing: Anhui University of Science and Technology, 2018.
    [21] 孟磊,丁恩杰,吴立新. 基于矿山物联网的矿井突水感知关键技术研究[J]. 煤炭学报,2013,38(8):1397−1403.

    MENG Lei,DING Enjie,WU Lixin. Research on key technologies of water inrush perception based on mine IoT[J]. Journal of China Coal Society,2013,38(8):1397−1403.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  77
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 修回日期:  2021-09-23
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-01-28

目录

    /

    返回文章
    返回