留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土塬区延安组煤层地震响应特征物理模拟研究

邢廷栋 薛诗桂 黎小伟 索重辉 王辉明 焦艳艳

邢廷栋, 薛诗桂, 黎小伟, 索重辉, 王辉明, 焦艳艳. 黄土塬区延安组煤层地震响应特征物理模拟研究[J]. 煤田地质与勘探, 2021, 49(6): 87-94. doi: 10.3969/j.issn.1001-1986.2021.06.010
引用本文: 邢廷栋, 薛诗桂, 黎小伟, 索重辉, 王辉明, 焦艳艳. 黄土塬区延安组煤层地震响应特征物理模拟研究[J]. 煤田地质与勘探, 2021, 49(6): 87-94. doi: 10.3969/j.issn.1001-1986.2021.06.010
XING Tingdong, XUE Shigui, LI Xiaowei, SUO Chonghui, WANG Huiming, JIAO Yanyan. Physical modeling of seismic response for the coal seams of Yan'an Formation in loess tableland of North China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 87-94. doi: 10.3969/j.issn.1001-1986.2021.06.010
Citation: XING Tingdong, XUE Shigui, LI Xiaowei, SUO Chonghui, WANG Huiming, JIAO Yanyan. Physical modeling of seismic response for the coal seams of Yan'an Formation in loess tableland of North China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 87-94. doi: 10.3969/j.issn.1001-1986.2021.06.010

黄土塬区延安组煤层地震响应特征物理模拟研究

doi: 10.3969/j.issn.1001-1986.2021.06.010
基金项目: 

国家自然科学基金企业创新发展联合基金项目 U19B6003-004

详细信息
    第一作者:

    邢廷栋,1991年生,男,陕西榆林人,硕士,工程师,从事地震物理模拟实验及研究工作. E-mail:xingtd.swty@sinopec.com

    通信作者:

    薛诗桂,1980年生,男,河南南阳人,研究员,从事地震物理模拟及地震数据分析方法技术研究. E-mail:38473815@qq.com

  • 中图分类号: P631

Physical modeling of seismic response for the coal seams of Yan'an Formation in loess tableland of North China

  • 摘要: 针对黄土塬区延安组煤层地震响应复杂问题进行地震物理模拟研究。首先,研发适用于黄土塬地表干黄土层和煤层的模型材料,经过多次试验,最终选用在硅橡胶中添加硅气凝胶粉末的混合材料模拟疏松黄土塬地表层,选用在硅橡胶中添加超细碳粉的混合材料模拟低速低密度煤层;通过模具控制层位、逐层浇筑、三维雕刻起伏地层等方法,制作黄土塬区典型地质结构的三维地震物理模型,并开展地震物理模拟及地震成像分析。结果表明,延安组煤层与围岩较大的波阻抗差异形成较强的反射振幅,对下部地层的成像有较强的屏蔽作用;较厚的多组煤层之间会形成层间多次波,影响下伏地层的成像。用地震振幅属性对煤层进行刻画时,计算时窗大于40 ms更有利于煤层识别,但由于煤层存在调谐效应,用地震属性预测煤层厚度存在一定陷阱。

     

  • 图  模型制作材料

    Fig. 1  Material for models

    图  地质模型原型

    Fig. 2  Geological model

    图  2组煤层物理模型

    Fig. 3  Two sets of coal seam physical models

    图  三维地震物理模型

    Fig. 4  3D seismic physical model

    图  目的层叠后偏移剖面(Inline)

    Fig. 5  Post-stack migration seismic section of the target strata

    图  叠前时间偏移剖面

    Fig. 6  PSTM seismic section of the final model

    图  不同时窗计算下目的层模型振幅属性

    Fig. 7  Amplitude attributes of the target layer model under different time windows

    图  不同时窗计算下最终模型振幅属性

    Fig. 8  Amplitude attributes of the final model under different time windows

    表  1  三维地质模型设计参数与测量参数

    Table  1  Design parameters and test parameters of the model

    地层名称 模型设计vP/(m·s–1) 模型实测vP/(m·s–1) 模型密度/(g·cm–3) 实际地层vP/(m·s–1)
    近地表 900 939 1.022 1 800
    KT_Q 1 200 1 212 1.056 2 400
    KT_K1hd 2 100 2 104 1.122 4 200
    KT_K1hh 2 150 2 117 1.130 4 300
    KT_K1hc 2 000 2 000 1.100 4 000
    KT_K1yj 2 200 2 202 1.142 4 400
    KT_J2a 2 125 2 148 1.133 4 250
    KT_y2z 2 150 2 178 1.134 4 300
    KT_y8 2 125 2 145 1.135 4 250
    KT_y9 2 250 2 296 1.137 4 500
    KT_y10 2 300 2 308 1.182 4 600
    KT_c6 1 600 1 621 1.061 3 200
    KT_c7 2 200 2 208 1.100 4 400
    KT_c81 2 275 2 303 1.129 4 550
    KT_c91 2 600 2 663 1.284 5 200
    下载: 导出CSV

    表  2  物理模型实验的观测系统参数

    Table  2  Observation system parameters of the physical model experiment

    参数 物理模型采集 野外采集
    震源主频 170 kHz 17 Hz
    炮线距 28 mm 560 m
    测线距 16 mm 320 m
    束线距 16 mm 320 m
    采样点数 4 500 4 500
    炮点距 4 mm 80 m
    道间距 2 mm 40 m
    采样间隔 0.08 μs 0.8 ms
    覆盖次数 110 110
    面元 2 mm×1 mm 40 m×20 m
    下载: 导出CSV
  • [1] 刘占勇, 江涛, 宋洪柱, 等. 中国煤炭资源勘查开发程度分析[J]. 煤田地质与勘探, 2013, 41(5): 1–5.. doi: 10.3969/j.issn.1001-1986.2013.05.001

    LIU Zhanyong, JIANG Tao, SONG Hongzhu, et al. Analysis of explorative and exploitative degree of China coal resources[J]. Coal Geology & Exploration, 2013, 41(5): 1–5.. doi: 10.3969/j.issn.1001-1986.2013.05.001
    [2] 程建远, 聂爱兰, 张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探, 2016, 44(6): 136–141.. doi: 10.3969/j.issn.1001-1986.2016.06.025

    CHENG Jianyuan, NIE Ailan, ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration, 2016, 44(6): 136–141.. doi: 10.3969/j.issn.1001-1986.2016.06.025
    [3] 滕吉文, 司芗, 王玉辰. 我国化石能源勘探、开发潜能与未来[J]. 石油物探, 2021, 60(1): 1–12.. doi: 10.3969/j.issn.1000-1441.2021.01.001

    TENG Jiwen, SI Xiang, WANG Yuchen. Potential and future of fossil fuel exploration and development in China[J]. Geophysical Prospecting for Petroleum, 2021, 60(1): 1–12.. doi: 10.3969/j.issn.1000-1441.2021.01.001
    [4] 程建远, 王寿全, 宋国龙. 地震勘探技术的新进展与前景展望[J]. 煤田地质与勘探, 2009, 37(2): 55–58.. doi: 10.3969/j.issn.1001-1986.2009.02.015

    CHENG Jianyuan, WANG Shouquan, SONG Guolong. The new development and foreground expectation of seismic exploration[J]. Coal Geology & Exploration, 2009, 37(2): 55–58.. doi: 10.3969/j.issn.1001-1986.2009.02.015
    [5] 滕吉文, 乔勇虎, 宋鹏汉. 我国煤炭需求、探查潜力与高效利用分析[J]. 地球物理学报, 2016, 59(12): 4633–4653.. doi: 10.6038/cjg20161224

    TENG Jiwen, QIAO Yonghu, SONG Penghan. Analysis of exploration, potential reserves and high efficient utilization of coal in China[J]. Chinese Journal of Geophysics(in Chinese), 2016, 59(12): 4633–4653.. doi: 10.6038/cjg20161224
    [6] 程建远, 李宁, 侯世宁, 等. 黄土塬区地震勘探技术发展现状综述[J]. 中国煤炭地质, 2009, 21(12): 72–76.. doi: 10.3969/j.issn.1674-1803.2009.12.020

    CHENG Jianyuan, LI Ning, HOU Shining, et al. Development status overview of seismic prospecting technology in loess tableland[J]. Coal Geology of China, 2009, 21(12): 72–76.. doi: 10.3969/j.issn.1674-1803.2009.12.020
    [7] 陈超群, 高秦, 何争光, 等. 鄂尔多斯盆地西南部巨厚黄土塬区非纵地震资料处理技术[J]. 煤田地质与勘探, 2017, 45(1): 143–151.. doi: 10.3969/j.issn.1001-1986.2017.01.028

    CEHN Chaoqun, GAO Qin, HE Zhengguang, et al. The off-line seismic exploration and its application in huge-thick loess area in Ordos Basin[J]. Coal Geology & Exploration, 2017, 45(1): 143–151.. doi: 10.3969/j.issn.1001-1986.2017.01.028
    [8] 白万山, 刘田田, 李红桃. 黄土塬地区煤田地震勘探资料处理技术[J]. 煤田地质与勘探, 2014, 42(4): 82–85.. doi: 10.3969/j.issn.1001-1986.2014.04.018

    BAI Wanshan, LIU Tiantian, LI Hongtao. Processing technologies of seismic data from the coalfield in loess plateau area[J]. Coal Geology & Exploration, 2014, 42(4): 82–85.. doi: 10.3969/j.issn.1001-1986.2014.04.018
    [9] 周俊杰, 王雨, 侯玮. 黄土塬地区煤田三维地震综合处理技术[J]. 地球物理学进展, 2016, 31(5): 2299–2305. https://d.wanfangdata.com.cn/periodical/dqwlxjz201605057

    ZHOU Junjie, WANG Yu, HOU Wei. 3D seismic comprehensive processing technology of coalfield in loess tableland[J]. Progress in Geophysics(in Chinese), 2016, 31(5): 2299–2305. https://d.wanfangdata.com.cn/periodical/dqwlxjz201605057
    [10] 陈超群, 田媛媛, 高秦, 等. 基于随机函数数据重构的分频异常振幅衰减技术在巨厚黄土塬区的应用[J]. 石油物探, 2019, 58(5): 741–749.. doi: 10.3969/j.issn.1000-1441.2019.05.013

    CHEN Chaoqun, TIAN Yuanyuan, GAO Qin, et al. Frequency-division abnormal amplitude attenuation after data reconstruction based on random function and its application in the very thick loess tableland area, Ordos Basin[J]. Geophysical Prospecting for Petroleum, 2019, 58(5): 741–749.. doi: 10.3969/j.issn.1000-1441.2019.05.013
    [11] 熊晓军, 贺振华, 黄德济. 三维波动方程正演及模型应用研究[J]. 石油物探, 2005, 44(6): 554–556.. doi: 10.3969/j.issn.1000-1441.2005.06.004

    XIONG Xiaojun, HE Zhenhua, HUANG Deji. The application of 3D wave equation forward and modeling[J]. Geophysical Prospecting for Petroleum, 2005, 44(6): 554–556.. doi: 10.3969/j.issn.1000-1441.2005.06.004
    [12] 魏建新, 牟永光, 狄帮让. 三维地震物理模型的研究[J]. 石油地球物理勘探, 2002, 37(6): 556–561.. doi: 10.3321/j.issn:1000-7210.2002.06.002

    WEI Jianxin, MOU Yongguang, DI Bangrang. Study of 3D seismic physical model[J]. Oil Geophysical Prospecting, 2002, 37(6): 556–561.. doi: 10.3321/j.issn:1000-7210.2002.06.002
    [13] 戴世鑫. 基于物理模型的煤田地震属性响应特征的关键技术研究[D]. 北京: 中国矿业大学(北京), 2012. http://cdmd.cnki.com.cn/article/cdmd-11413-1013132163.htm

    DAI Shixin. Research on key technology of response characteristics of seismic attributes based on the physical model[D]. Beijing: China University of Mining and Technology, 2012. http://cdmd.cnki.com.cn/article/cdmd-11413-1013132163.htm
    [14] 韩堂惠, 戴世鑫, 李小华, 等. 淮南煤系地层地震物理模型研究[J]. 煤炭学报, 2011, 36(4): 588–592. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201104013.htm

    HAN Tanghui, DAI Shixin, LI Xiaohua, et al. Seismic physical modeling research on coal measure strata in Huainan[J]. Journal of China Coal Society, 2011, 36(4): 588–592. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201104013.htm
    [15] 胡朝元. 薄煤层三维地震勘探技术: 以淮南张集矿区11-2煤为例[D]. 北京: 中国矿业大学(北京), 2011.

    HAN Chaoyuan. Three-Dimensional seismic exploration technology for thin coal seam: Taking the 11-2 coal seam in Zhangji coalming for example[D]. Beijing: China University of Mining & Technology(Beijing), 2011.
    [16] 陈晓智, 汤达祯, 许浩, 等. 彬长矿区延安组煤层发育特征及其控制因素分析[J]. 中国矿业, 2011, 20(2): 110–113.

    CHEN Xiaozhi, TANG Dazhen, XU Hao, et al. Development characteristics of coal seam and their controlling factors in Yan'an Formation in Binchang area[J]. China Mining Magazine, 2011, 20(2): 110–113.
    [17] 王雪秋. 复杂近地表地震波响应特征研究: 以中国西部地区为例[D]. 长春: 吉林大学, 2009.

    WANG Xueqiu. Study on seismic wave field under complex surface conditions of special physiognomy in West China[D]. Changchun: Jilin University, 2009.
    [18] 李智宏, 朱海龙, 赵群, 等. 地震物理模型材料研制与应用研究[J]. 地球物理学进展, 2009, 24(2): 408–417.. doi: 10.3969/j.issn.1004-2903.2009.02.006

    LI Zhihong, ZHU Hailong, ZHAO Qun, et al. Study and materialization of new seismic physical model building materials[J]. Progress in Geophysics, 2009, 24(2): 408–417.. doi: 10.3969/j.issn.1004-2903.2009.02.006
    [19] 魏建新, 狄帮让. 地震物理模型中三维地质模型材料特性研究[J]. 石油物探, 2006, 45(6): 586–590.. doi: 10.3969/j.issn.1000-1441.2006.06.006

    WEI Jianxin, DI Bangrang. Properties of materials forming the 3D geological model in seismic physical model[J]. Geophysical Prospecting for Petroleum, 2006, 45(6): 586–590.. doi: 10.3969/j.issn.1000-1441.2006.06.006
    [20] 赵群, 马国庆, 宗遐龄. 超声地震物理模型连续数据采集系统[J]. 地球物理学进展, 2004, 19(4): 786–788.. doi: 10.3969/j.issn.1004-2903.2004.04.014

    ZHAO Qun, MA Guoqing, ZONG Xialing. Continuance data acquisition system of ultrasonic seismic physical modeling[J]. Progress in Geophysics, 2004, 19(4): 786–788.. doi: 10.3969/j.issn.1004-2903.2004.04.014
    [21] 狄帮让, 魏建新, 夏永革. 三维地震物理模型技术的效果与精度研究[J]. 石油地球物理勘探, 2002, 37(6): 562–568.. doi: 10.3321/j.issn:1000-7210.2002.06.003

    DI Bangrang, WEI Jianxin, XIA Yongge. Study on effects and precision of 3D seismic physical model technique[J]. Oil Geophysical Prospecting, 2002, 37(6): 562–568.. doi: 10.3321/j.issn:1000-7210.2002.06.003
    [22] 赵鸿儒, 王铁男, 唐文榜. 中国地球物理模型试验的发展[J]. 地球物理学报, 1994, 37(增刊1): 269–276. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S1.023.htm

    ZHAO Hongru, WANG Tienan, TANG Wenbang. The developments of geophysical modeling[J]. Acta Geophysica Sinica, 1994, 37(Sup. 1): 269–276. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S1.023.htm
    [23] 王开燕, 徐清彦, 张桂芳, 等. 地震属性分析技术综述[J]. 地球物理学进展, 2013, 28(2): 815–823. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201302033.htm

    WANG Kaiyan, XU Qingyan, ZHANG Guifang, et al. Summary of seismic attribute analysis[J]. Progress in Geophysics, 2013, 28(2): 815–823. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201302033.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  16
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-10-22
  • 发布日期:  2021-12-25
  • 网络出版日期:  2021-12-30

目录

    /

    返回文章
    返回