留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窑街矿区浅层煤系气储层特征及勘探开发关键技术

杜新锋 袁崇亮 王正喜 王君得 李世兵 刘敬丹 何秀清 张天国 单元伟 方佳伟

杜新锋, 袁崇亮, 王正喜, 王君得, 李世兵, 刘敬丹, 何秀清, 张天国, 单元伟, 方佳伟. 窑街矿区浅层煤系气储层特征及勘探开发关键技术[J]. 煤田地质与勘探, 2021, 49(6): 58-66,73. doi: 10.3969/j.issn.1001-1986.2021.06.006
引用本文: 杜新锋, 袁崇亮, 王正喜, 王君得, 李世兵, 刘敬丹, 何秀清, 张天国, 单元伟, 方佳伟. 窑街矿区浅层煤系气储层特征及勘探开发关键技术[J]. 煤田地质与勘探, 2021, 49(6): 58-66,73. doi: 10.3969/j.issn.1001-1986.2021.06.006
DU Xinfeng, YUAN Chongliang, WANG Zhengxi, WANG Junde, LI Shibing, LIU Jingdan, HE Xiuqing, ZHANG Tianguo, SHAN Yuanwei, FANG Jiawei. Characteristics of shallow coal measure gas reservoir and key technologies of exploration and development in Yaojie mining area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 58-66,73. doi: 10.3969/j.issn.1001-1986.2021.06.006
Citation: DU Xinfeng, YUAN Chongliang, WANG Zhengxi, WANG Junde, LI Shibing, LIU Jingdan, HE Xiuqing, ZHANG Tianguo, SHAN Yuanwei, FANG Jiawei. Characteristics of shallow coal measure gas reservoir and key technologies of exploration and development in Yaojie mining area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 58-66,73. doi: 10.3969/j.issn.1001-1986.2021.06.006

窑街矿区浅层煤系气储层特征及勘探开发关键技术

doi: 10.3969/j.issn.1001-1986.2021.06.006
基金项目: 

国家自然科学基金项目 41972167

山西省科技重大专项项目 20201101002

详细信息
    第一作者:

    杜新锋,1975年生,男,陕西渭南人,博士,研究员,从事煤层气勘探开发相关研究与工程. E-mail:duxinfeng@cctegxian.com

  • 中图分类号: P618.12

Characteristics of shallow coal measure gas reservoir and key technologies of exploration and development in Yaojie mining area

  • 摘要: 煤系气勘探开发不仅可以减少资源浪费,而且可以缓解我国能源危机,降低煤矿瓦斯事故,保护大气环境,为实现碳达峰、碳中和目标做出贡献。依托窑街矿区海石湾井田三采区浅层煤系气开发示范工程,分析窑街矿区煤系气储层特征,探讨煤系气勘探开发关键技术。研究表明:井田煤系气主要赋存于侏罗系中统窑街群煤系第四岩组(J2yj4)的油页岩、油砂岩和第二岩组(J2yj2)的油A层、煤二层等特厚产层中;油A层、煤二层气含量随着埋深的增加而增大;CO2浓度较高,且随着埋深增加而减小;煤二层吸附能力较强,油A层更容易解吸;各层渗透率为油砂岩 > 油A层 > 煤二层 > 油页岩;抗压强度、抗拉强度、弹性模量、泊松比和脆性指数显示各产层改造难易程度由小到大依次为油砂岩、油A层、油页岩、煤二层。油页岩有机质丰度4.06%,干酪根类型Ⅱ2–Ⅲ型;油A层有机质丰度43.27%,变质程度呈两极分化,腐泥煤镜质体反射率0.48%~0.53%,腐植煤镜质体反射率0.89%~0.97%;煤二层有机质丰度92.87%,其中镜质组体积分数67.90%,惰质组29.10%,壳质组3.50%,变质程度以肥煤为主,含少量气肥煤。与我国大部分欠压地层相比,各产层储层压力正常,产气潜力大;煤系气开发应优选煤二层、油A层和油页岩;多段分簇、限流法射孔工艺和细砂防滤失、投球暂堵、两高一低(高排量、高砂量、低砂比)的压裂工艺适合于该区致密特厚储层改造,挂泵位置低于煤二层射孔段和重力式螺旋气锚排采工艺可减少CO2的影响,提高排采效率。这些关键技术的应用显著提高了井田示范工程产气效果,单井日产气量超过2 000 m3

     

  • 图  1  民和盆地构造单元(据卫平生等[11])

    Fig. 1  Tectonic units of Minhe Basin(According to Wei Pingsheng et al[11])

    图  2  海石湾井田主要煤系柱状图

    注:图中$\frac{{0 \sim 11.79}}{{4.14(46)}}$表示$ \frac{最小\text{~}最大值}{平均值(样品数)} $

    Fig. 2  Histogram of main coal measures in Haishiwan mine field

    图  3  样品等温吸附曲线

    Fig. 3  Isothermal adsorption curves of samples

    图  4  油砂层显微图像

    Fig. 4  Microscopic image of oil sand layer

    图  5  海石湾一期4口井主要产层柱状对比

    Fig. 5  Columnar comparison of main producing layers of 4 wells in phase I

    图  6  HSW02-2V井排采曲线(2021年)

    Fig. 6  Drainage production curves of well HSW02-2V(2021)

    图  7  3口井产气量与井底流压关系曲线

    Fig. 7  Relationship curve between gas production and bottom hole flow pressure of 3 wells

    表  1  海石湾井田产层气含量和气成分测试结果

    Table  1  Test results of gas content and gas composition of the gas-producing layers in Haishiwan mine field

    井号 产层 总气含量/(cm3·g–1) 甲烷含量/(cm3·g–1) 气成分/%
    空气干燥基 干燥无灰基 空气干燥基 干燥无灰基 CH4 CO2 N2 C2+
    HSW01-2V 油A层 2.95 6.13 1.53 3.17 51.52 18.69 22.44 7.35
    煤二层 7.24 8.33 2.69 3.1 38.20 42.03 17.73 2.04
    HSW06-3V 油A层 2.59 7.79 1.53 4.57 59.71 16.62 13.42 10.26
    煤二层 7.93 8.79 4.33 4.78 54.68 30.02 12.78 2.52
    下载: 导出CSV

    表  2  各产层压汞实验测试结果

    Table  2  Test results of laminated mercury injection experiments of different gas-producing layers

    产层 比表面积/(m2·g–1) 总孔容/(cm3·g–1) 中位孔径/nm 平均孔径/nm 孔隙率/% 渗透率/10–3 μm2
    油砂岩 0.288 0.036 1 005.600 675.515 8.557 0.203
    油页岩 3.486 0.011 24.310 12.440 2.811 0.026
    油A层 9.185 0.028 24.610 12.160 4.685 0.049
    煤二层 18.973 0.049 16.120 10.130 5.967 0.033
    下载: 导出CSV

    表  3  各产层力学参数

    Table  3  Mechanical parameters of different gas-producing layers

    产层 抗压强度/MPa 抗拉强度/MPa 弹性模量/104 MPa 泊松比 脆性指数/%
    油页岩 15.01 1.46 0.88 0.25 27.19
    油砂岩 34.47 2.56 2.05 0.21 40.95
    油A层 29.44 2.25 1.69 0.22 36.51
    煤二层 7.97 0.70 0.44 0.26 23.54
    下载: 导出CSV

    表  4  油A层镜质体反射率测试结果

    Table  4  Test results of vitrinite reflectance of oil layer A

    样品编号 测定对象 反射率Rmax/% 标准差
    油A层-1 腐泥质 0.39~0.65/0.50(18) 0.051
    腐植质 0.78~1.11/0.97(6) 0.092
    油A层-2 腐泥质 0.48~0.65/0.53(9) 0.037
    腐植质 0.89~1.00/0.94(3) 0.038
    油A层-3 腐泥质 0.40~0.63/0.48(13) 0.054
    腐植质 0.75~1.10/0.89(7) 0.108
    注:表中0.39~0.65/0.50(18)表示最小~最大值/平均值(测点数)。
    下载: 导出CSV

    表  5  各产层储层压力与地应力参数

    Table  5  Reservoir pressure and in-situ stress parameters of different gas-producing layers

    产层 储层压力/ MPa 压力梯度/(MPa·hm–1) 闭合压力/ MPa 闭合压力梯度/(MPa·hm–1) 破裂压力/ MPa 破裂压力梯度/(MPa·hm–1)
    油页岩 8.88 1.10 8.97 1.09 15.00 1.84
    油A层 10.52 1.01 10.79 1.03 15.36 1.47
    煤二层 9.31 0.93 16.10 1.61 17.64 1.77
    下载: 导出CSV

    表  6  海石湾一期工程4口井射孔数据

    Table  6  Perforation data of 4 wells in Haishiwan project of phaseⅠ

    井名 目标产层 产层深度/m 产层厚度/m 射孔深度/m 射孔厚度/m
    HSW01-2V 油页岩 803.80~827.95 24.15 805.5~808.5
    821~824
    3
    油A层 890.60~899.80 9.20 893~896 3
    煤二层 907.90~923.30 15.40 913.5~916.5 3
    HSW02-2V 油A层 903.40~912.70 9.30 906~909 3
    煤二层 925.92~941.57 15.65 928~931
    936~939
    3
    3
    HSW04-1V 油页岩 710.35~746.30 35.95 718~721
    732~735
    3
    3
    煤二层 823.92~877.06 53.14 831~834
    850~854
    867~870
    3
    4
    3
    HSW06-3V 油A层 1 033.70~1 050.40 16.70 1 036~1 039
    1 044~1 047
    3
    3
    煤二层 1 062.70~1 102.15 39.45 1 071~1 074
    1 091~1 094
    3
    3
    下载: 导出CSV

    表  7  海石湾一期4口井压裂参数

    Table  7  Fracturing parameters of 4 wells in Haishiwan project of phaseⅠ

    井号 目标产层 施工压力/MPa 施工排量/(m3·min–1) 平均砂比/% 加砂量/m3 压裂液量/m3
    HSW01-2V 油页岩 20.4~27.1 8~11 9.27 79.06 1 346.74
    油A层
    煤二层
    19.5~27.6 8~11 9.27 87.33 1 745.59
    HSW02-2V 油A层 22.1~25.9 8~9 9.00 56.80 956.61
    煤二层 20.3~28.2 8~9 9.08 70.96 1 294.26
    HSW04-1V 油页岩 22.5~26.3 9 6.86 52.49 1 230.91
    煤二层 24.7~42.0 8~10 6.84 112.40 2 419.00
    HSW06-3V 油A层 16.6~21.2 9 9.14 57.97 957.86
    煤二层 20.9~25.5 8 7.20 83.05 1 635.80
    下载: 导出CSV
  • [1] 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3): 433-442. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903003.htm

    ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal measure gas[J]. Petroleum Exploration and Development, 2019, 46(3): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903003.htm
    [2] 汪孝敬, 胡正舟, 李艳平, 等. 准噶尔盆地侏罗系深部煤系气控制因素及勘探潜力[J]. 煤炭技术, 2020, 39(9): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202009017.htm

    WANG Xiaojing, HU Zhengzhou, LI Yanping, et al. Characteristic and exploration potential of deep coal measure gas assemblage in Jurassic of Junggar Basin[J]. Coal Technology, 2020, 39(9): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202009017.htm
    [3] 毕彩芹, 单衍胜, 逄礴, 等. 鸡西盆地煤炭资源枯竭矿区钻获高含气量煤系储层[J]. 中国地质, 2018, 45(6): 1306-1307.

    BI Caiqin, SHAN Yansheng, PANG Bo, et al. High gas coal reservoir drilled in coal resource exhausted mining areas of Jixi Basin[J]. Geology in China, 2018, 45(6): 1306-1307.
    [4] 曹代勇, 姚征, 李靖. 煤系非常规天然气评价研究现状与发展趋势[J]. 煤炭科学技术, 2014, 42(1): 89-92.

    CAO Daiyong, YAO Zheng, LI Jing. Evaluation status and development trend of unconventional gas in coal measure[J]. Coal Science and Technology, 2014, 42(1): 89-92.
    [5] 秦勇, 梁建设, 申建, 等. 沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J]. 煤炭学报, 2014, 39(8): 1559-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408026.htm

    QIN Yong, LIANG Jianshe, SHEN Jian, et al. Gas logging shows and gas reservoir types in sandstones and shales from southern Qinshui Basin[J]. Journal of China Coal Society, 2014, 39(8): 1559-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408026.htm
    [6] 王佟, 王庆伟, 傅雪海. 煤系非常规天然气的系统研究及其意义[J]. 煤田地质与勘探, 2014, 42(1): 24-27. doi: 10.3969/j.issn.1001-1986.2014.01.005

    WANG Tong, WANG Qingwei, FU Xuehai. The significance and the systematic research of the unconventional gas in coal measures[J]. Coal Geology & Exploration, 2014, 42(1): 24-27. doi: 10.3969/j.issn.1001-1986.2014.01.005
    [7] 易同生, 周效志, 金军. 黔西松河井田龙潭煤系煤层气-致密气成藏特征及共探共采技术[J]. 煤炭学报, 2016, 41(1): 212-220.

    YI Tongsheng, ZHOU Xiaozhi, JIN Jun. Reservoir formation characteristics and co-exploration and concurrent production technology of Longtan coal measure coalbed methane and tight gas in Songhe field, western Guizhou[J]. Journal of China Coal Society, 2016, 41(1): 212-220.
    [8] 秦勇, 吴建光, 李国璋, 等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报, 2020, 45(7): 2513-2522.

    QIN Yong, WU Jianguang, LI Guozhang, et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society, 2020, 45(7): 2513-2522.
    [9] 张虎权. 民和盆地油气藏形成地质条件[J]. 勘探家, 1998, 3(1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199801006.htm

    ZHANG Huquan. Geological conditions for Minhe Basin reservoirs[J]. Prospector, 1998, 3(1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199801006.htm
    [10] 苏琴, 李新宁, 于法政, 等. 民和盆地页岩气勘探潜力分析[J]. 科学技术与工程, 2011, 11(27): 6573-6577. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201127016.htm

    SU Qin, LI Xinning, YU Fazheng, et al. The favorable exploration target of shale gas in Tuha Basin[J]. Science and Technology and Engineering, 2011, 11(27): 6573-6577. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201127016.htm
    [11] 卫平生, 王新民. 民和盆地煤层气特征及形成地质条件[J]. 天然气工业, 1997, 17(4): 19-22.

    WEI Pingsheng, WANG Xinmin. Coal seam gas characteristics and geological conditions of Minhe Basin[J]. Natural Gas Industry, 1997, 17(4): 19-22.
    [12] 肖贤明, 陈中凯, 金奎励. 中国腐泥煤的岩石学特征[J]. 煤田地质与勘探, 1990, 18(1): 7-13.

    XIAO Xianming, CHEN Zhongkai, JIN Kuili. The petrological characteristics of sapropelic coals in China[J]. Coal Geology & Exploration, 1990, 18(1): 7-13.
    [13] 肖贤明, 程顶胜. 腐泥煤的煤化作用研究[J]. 煤田地质与勘探, 1992, 20(2): 25-33.

    XIAO Xianming, CHENG Dingsheng. Studies on the coalification of sapropelic coals[J]. Coal Geology & Exploration, 1992, 20(2): 25-33.
    [14] 周际永, 熊俊杰, 刘春祥, 等. 压裂液降滤失技术研究[J]. 内蒙古石油化工, 2014, 40(12): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201411035.htm

    ZHOU Jiyong, XIONG Junjie, LIU Chunxiang, et al. The study of technologies for fracturing fluid leakoff control[J]. Inner Mongolia Petrochemical Industry, 2014, 40(12): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201411035.htm
    [15] 刘光启, 马连湘, 刘杰, 等. 化学化工物性数据手册(无机卷)[M]. 北京: 化学工业出版社, 2002.

    LIU Guangqi, MA Lianxiang, LIU Jie, et al. Chemical data manual: Inorganic volumes[M]. Beijing: Chemical Industry Press, 2002.
    [16] 杜新锋, 郭盛强, 张群, 等. 多煤层煤层气井分层控压合层排采技术及装备[J]. 煤炭科学技术, 2018, 46(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201806019.htm

    DU Xinfeng, GUO Shengqiang, ZHANG Qun, et al. Separate-layer pressure control and multi-layer drainage technology and device for coalbed methane wells with multiple seams[J]. Coal Science and Technology, 2018, 46(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201806019.htm
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  5
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2021-11-01
  • 刊出日期:  2021-12-25
  • 网络出版日期:  2021-12-30

目录

    /

    返回文章
    返回