留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

突水矿井动水巷道骨料灌注截流可视化平台研制与试验研究

牟林

牟林. 突水矿井动水巷道骨料灌注截流可视化平台研制与试验研究[J]. 煤田地质与勘探, 2021, 49(5): 156-166. doi: 10.3969/j.issn.1001-1986.2021.05.017
引用本文: 牟林. 突水矿井动水巷道骨料灌注截流可视化平台研制与试验研究[J]. 煤田地质与勘探, 2021, 49(5): 156-166. doi: 10.3969/j.issn.1001-1986.2021.05.017
MOU Lin. Experimental study on visual system for water-blocking process of hydrodynamic roadway by aggregate pouring in water inrush mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 156-166. doi: 10.3969/j.issn.1001-1986.2021.05.017
Citation: MOU Lin. Experimental study on visual system for water-blocking process of hydrodynamic roadway by aggregate pouring in water inrush mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 156-166. doi: 10.3969/j.issn.1001-1986.2021.05.017

突水矿井动水巷道骨料灌注截流可视化平台研制与试验研究

doi: 10.3969/j.issn.1001-1986.2021.05.017
基金项目: 

国家重点研发计划课题 2017YFC0804106

中煤科工集团西安研究院有限公司科技创新基金项目 2019XAYMS22

详细信息
    第一作者:

    牟林,1985年生,男,湖北松滋人,博士,副研究员,从事煤矿水害防治研究工作. E-mail:258323938@qq.com

  • 中图分类号: TD741

Experimental study on visual system for water-blocking process of hydrodynamic roadway by aggregate pouring in water inrush mine

  • 摘要: 通过骨料灌注法进行动水巷道截流堵水是矿井淹没后进行救援和复矿的重要方法。为研究骨料灌注截流堵水机理,基于水头高度、流速、巷道尺寸、倾角、糙度、骨料粒径、灌注速度等因素建立大型骨料灌注截流试验平台,并依托平台进行单孔、多孔灌注试验,分析动水巷道骨料运移堆积规律。结果表明:骨料正常灌注期间堆积体具有向下游运移生长的特性,迎水面和背水面由涡流控制的坡脚形态存在差异化现象;低流速条件下骨料会快速接顶且孔间存在空腔,高流速条件下孔间堆积体逐渐接龙、灌注量在下游相互叠加;残余过水通道沿截面呈U形分布,存在扰流接顶效应、空气掏蚀效应、堵孔效应、溃坝冲刷效应等典型动力学现象;结合解析法和数值法,对骨料颗粒的起动速度及典型现象进行计算和模拟,验证了试验平台的可靠性;通过浆液灌注实验验证浆液配比和骨料粒径对注浆效果存在重要影响,浆液在骨料堆积体中存在“上多下少”的空间分带性。试验平台的研制对截流堵水工程技术优化具有指导意义。

     

  • 图  阻水墙施工过程

    Fig. 1  Construction process of water blocking wall

    图  突水及治理模型

    Fig. 2  Diagram of water inrush and control model

    图  试验平台系统功能分区

    1—可变水位定水头水箱;2—流量表;3—压力传感器;4—升降调节装置;5—骨料灌注料斗;6—进料孔;7—数据采集设备;8—计算机;9—循环水泵;10—照相机;11—模拟巷道系统;12—进水口;13—备用孔

    Fig. 3  Functional zoning of test platform system

    图  平台装配情况及糙度模拟装置

    Fig. 4  Platform assembly and roughness simulation device

    图  粒径1~2 mm与0.1~0.2 mm骨料在不同坡度堆积形态的演化过程

    Fig. 5  Accumulation morphology evolution of 1-2 mm and 0.1-0.2 mm particle size in different gradient

    图  迎水与背水坡面形态(0.2~0.4 mm)

    Fig. 6  Morphology of upstream and downstream slope (0.2-0.4 mm)

    图  孔间接龙及灌注量叠加效应

    Fig. 7  Connection between holes and superposition effect of pouring volume

    图  光滑型巷道残余过水通道空间形态

    Fig. 8  Morphology of residual water passage in smooth pathway

    图  粗糙型巷道残余过水通道空间形态

    Fig. 9  Morphology of residual water passage in rough pathway

    图  10  空气进入后对流场及堆积形态的影响

    Fig. 10  Transformation of flow field and accumulation morphology after air entering

    图  11  沙粒的吸水聚团作用及孔底堵孔现象

    Fig. 11  Water absorption cluster phenomenon and hole plugging at the bottom

    图  12  下游主动放水卸压瞬间的水动力学现象

    Fig. 12  Hydrodynamic phenomena during downstream pressure relief

    图  13  上下游水头差响应过程曲线

    Fig. 13  Water head difference curves during aggregate perfusion

    图  14  骨料灌注过程现象的数值模拟

    Fig. 14  Numerical simulation of aggregate pouring process

    图  15  各阶段流态空间分布特征

    Fig. 15  Flow pattern distribution in different stages

    图  16  水泥浆液在骨料中的渗透现象

    Fig. 16  Penetration of cement slurry in aggregate

    表  1  相似模型参数取值

    Table  1  Calculation parameter of similitude model

    相似类型 项目 相似比
    几何相似 长度 0.05
    糙度 0或0.05
    运动相似 速度 0.22
    时间 0.23
    流量 5.5×10–4
    运动黏度 1
    动力相似 压强 0.05
    密度 1
    动力黏度 1
    重力相似 重力加速度 1
    重力 1.25×10–4
    压力相似 压力 1.25×10–4
    下载: 导出CSV

    表  2  不同工况下残余通道流速统计

    Table  2  Residual channel velocity under different working conditions

    粒径/mm 起动流速v/(m·s–1) 倾斜角度(向上流动为正)
    –8°
    dicm mi/(kg·s–1) Q/(m·s–1) v/(m·s–1) di/cm mi/(kg·s–1) Q/(m·s–1) v/(m·s–1) di/cm mi/(kg·s–1) Q/(m·s–1) v/(m·s–1)
    2~4 0.36~0.70 3.2 0.016 13.5 0.59 2.71 0.016 13.0 0.67 2.50 0.016 13.5 0.75
    1~2 0.3~0.55 2.69 0.019 12.0 0.62 2.27 0.019 12.0 0.73 2.30 0.019 13.0 0.79
    0.5~1.0 0.25~0.42 3.07 0.026 12.5 0.57 2.99 0.022 13.5 0.63 2.83 0.044 14.7 0.72
    0.2~0.4 0.20~0.34 3.36 0.080 13.5 0.56 3.20 0.070 13.0 0.56 3.31 0.075 15.0 0.63
    0.1~0.2 0.20~0.28 4.43 0.085 13.5 0.42 4.06 0.093 12.5 0.43 3.05 0.096 14.0 0.64
      注:画下横线数据为射流工况下的结果。
    下载: 导出CSV
  • [1] 国家安全生产监督管理总局, 国家煤矿安全监察局. 煤矿防治水细则[S]. 北京: 煤炭工业出版社, 2018.

    State Administration of Work Safety, National Coal Mine Safety Supervision Bureau. Coal mine water control rules[S]. Beijing: China Coal Industry Publishing House, 2018.
    [2] 何思源. 开滦范各庄矿岩溶陷落柱特大突水灾害的治理[J]. 煤田地质与勘探, 1986, 14(2): 35-42. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=270f69f8-e3ed-4af4-9aa7-27e72d706899

    HE Siyuan. Treatment of the great water inrush disaster of the karst collapse column in Fangezhuang mine[J]. Coal Geology & Exploration, 1986, 14(2): 35-42. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=270f69f8-e3ed-4af4-9aa7-27e72d706899
    [3] 朱际维. 河北开滦矿务局范各庄矿奥灰岩溶陷落柱特大突水灾害及治理[C]//岩石工程事故与灾害实录(第一册). 北京: 中国建筑工业出版社, 1994: 83-102.

    ZHU Jiwei. Water inrush disaster and treatment of Ordovician limestone karst collapse column in Fangezhuang mine[C]//Record of Accidents and Disasters in Rock Engineering(Volume I). Beijing: China Architectecture & Building Press, 1994: 83-102.
    [4] 王则才. 国家庄煤矿8101工作面动水注浆堵水技术[J]. 煤田地质与勘探, 2004, 32(4): 26-28.. doi: 10.3969/j.issn.1001-1986.2004.04.009

    WANG Zecai. Grouting technique for water-shut-off under water-flowing conditions in No. 8101 work-face, Guojiazhuang Coal Mine[J]. Coal Geology & Exploration, 2004, 32(4): 26-28.. doi: 10.3969/j.issn.1001-1986.2004.04.009
    [5] 刘建功, 赵庆彪, 白忠胜, 等. 东庞矿陷落柱特大突水灾害快速治理[J]. 煤炭科学技术, 2005, 33(5): 4-7.. doi: 10.3969/j.issn.0253-2336.2005.05.002

    LIU Jiangong, ZHAO Qingbiao, BAI Zhongsheng, et al. Rapid holding and control for special large water inrush from sink hole in Dongpang Mine[J]. Coal Science and Technology, 2005, 33(5): 4-7.. doi: 10.3969/j.issn.0253-2336.2005.05.002
    [6] 南生辉. 综合注浆法建造阻水墙技术[J]. 煤炭工程, 2010, 42(6): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201006014.htm

    NAN Shenghui. Construction technology of water blocking wall by comprehensive grouting method[J]. Coal Engineering, 2010, 42(6): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201006014.htm
    [7] 邵红旗, 王维. 双液注浆法快速建造阻水墙封堵突水巷道[J]. 煤矿安全, 2011, 42(11): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201111013.htm

    SHAO Hongqi, WANG Wei. Fast construction of water blocking wall to block water inrush roadway by double liquid grouting[J]. Safety in Coal Mines, 2011, 42(11): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201111013.htm
    [8] 岳卫振. 平衡压力法在极松散煤巷注浆截流堵水中的应用[J]. 煤炭工程, 2012, 44(8): 40-42.. doi: 10.3969/j.issn.1671-0959.2012.08.017

    YUE Weizhen. Balanced pressure method applied to grouting and water sealing of loose seam gateway[J]. Coal Engineering, 2012, 44(8): 40-42.. doi: 10.3969/j.issn.1671-0959.2012.08.017
    [9] 姬中奎. 矿井特大突水巷道动水截流钻探技术研究[J]. 煤炭技术, 2014, 33(5): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405004.htm

    JI Zhongkui. Research on drilling technology for roadway dynamic water sealing in supergiant water inrush coal mine[J]. Coal Technology, 2014, 33(5): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405004.htm
    [10] 徐博会, 丁述理, 白峰青. 煤矿特大突水事故注浆堵水过程的数值模拟[J]. 煤炭学报, 2010, 35(10): 1665-1669. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201010018.htm

    XU Bohui, DING Shuli, BAI Fengqing. Numerical simulation of grouting for stopping up water in water inrush accident of coal mine[J]. Journal of China Coal Society, 2010, 35(10): 1665-1669. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201010018.htm
    [11] 王威. 动水条件下堵巷截流技术与阻水段阻水能力研究[D]. 北京: 煤炭科学研究总院, 2012.

    WANG Wei. Study on techniques of roadway-blocking & flow-cutting off under hydrodynamic conditions and capability evaluation of water-blocking segment[D]. Beijing: China Coal Research Institute, 2012.
    [12] 惠爽. 矿井淹没巷道多孔灌注骨料封堵模拟试验[D]. 徐州: 中国矿业大学, 2018.

    HUI Shuang. An experimental investigation on pouring aggregate to plug an inundated mine tunnel through boreholes[D]. Xuzhou: China University of Mining and Technology, 2018.
    [13] 李维欣. 圆型过水巷道骨料灌注模拟试验[D]. 徐州: 中国矿业大学, 2016.

    LI Weixin. An experimental simulation on aggregate filling to horizontal circular tunnel with flowing water[D]. Xuzhou: China University of Mining and Technology, 2016.
    [14] 牟林, 董书宁, 郑士田, 等. 基于CFD-DEM耦合模型的阻水墙建造过程数值模拟[J]. 岩土工程学报, 2021, 43(3): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103015.htm

    MOU Lin, DONG Shuning, ZHENG Shitian, et al. Numerical simulation of water blocking wall construction based on CFD-DEM coupling method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103015.htm
    [15] 董书宁, 牟林. 突水淹没矿井动水巷道截流阻水墙建造技术研究[J]. 煤炭科学技术, 2021, 49(1): 294-303. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202101027.htm

    DONG Shuning, MOU Lin. Study on construction technology of water blocking wall in hydrodynamic pathway of submerged mine due to water inrush[J]. Coal Science and Technology, 2021, 49(1): 294-303. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202101027.htm
    [16] 牟林, 董书宁. 截流巷道骨料堆积体中浆液运移规律与阻水机制[J]. 地下空间与工程学报, 2020, 16(6): 1891-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202006035.htm

    MOU Lin, DONG Shuning. Migration rule and water blocking mechanism of cement slurry in aggregate accumulation of underground tunnel closure[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1891-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202006035.htm
    [17] ZHAN Yizheng, ZHANG Xianping, HUANG Ying, et al. The angle of repose for submerged non-cohesive sediment particles[C]//Proceedings of the Ninth International Symposium on River Sedimentation. Wuhan: State Key Laboratory of Water Resources and Hydopower Enginearing Science, Wuhan University, 2004.
    [18] 詹义正, 黄卫东, 陈立, 等. 均匀黏性-散体泥沙的统一水下休止角公式[C]//第六届全国泥沙基本理论研究学术讨论会论文集. 郑州: 黄河水利出版社, 2005: 191-197.

    ZHAN Yizheng, HUANG Weidong, CHEN Li, et al. Uniform angle of repose formula for uniform viscous and granular sediment[C]//Proceedings of the 6th National Symposium on Basic Theory of Sediment. Zhengzhou: The Yellow River Water Conservancy Press, 2005: 191-197.
    [19] 詹义正, 卢金友, 曹志芳, 等. 论动水水下休止角与河岸理论边坡[C]//长江护岸及堤防防渗工程论文选集. 北京: 中国水利水电出版社, 2003: 218-223.

    ZHAN Yizheng, LU Jinyou, CAO Zhifang, et al. On dynamic underwater angle and theoretical slope of river bank[C]//Proceedings of Yangtze River Revetment and Dike Seepage Control Engineering. Beijing: China Water & Power Press, 2003: 218-223.
    [20] 何文社, 方铎, 杨具瑞, 等. 泥沙起动流速研究[J]. 水利学报, 2002, 33(10): 51-56.. doi: 10.3321/j.issn:0559-9350.2002.10.009

    HE Wenshe, FANG Duo, YANG Jurui, et al. Study on incipient velocity of sediment[J]. Shuili Xuebao, 2002, 33(10): 51-56.. doi: 10.3321/j.issn:0559-9350.2002.10.009
    [21] 牟林. 过水巷道中骨料起动力学机制及两相流耦合模拟[J]. 煤田地质与勘探, 2020, 48(6): 161-169.. doi: 10.3969/j.issn.1001-1986.2020.06.022

    MOU Lin. Mechanism of aggregate start-up process and coupling of two-phase flow in hydrodynamic roadway[J]. Coal Geology & Exploration, 2020, 48(6): 161-169.. doi: 10.3969/j.issn.1001-1986.2020.06.022
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  18
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-07-06
  • 发布日期:  2021-10-25
  • 网络出版日期:  2021-11-06

目录

    /

    返回文章
    返回