陈晨, 何邢益, 牛庆合, 于洪旭, 解翔宇. 超临界CO2注入煤层对顶板岩石纵波速度及力学响应特征研究[J]. 煤田地质与勘探, 2021, 49(5): 98-104. DOI: 10.3969/j.issn.1001-1986.2021.05.011
引用本文: 陈晨, 何邢益, 牛庆合, 于洪旭, 解翔宇. 超临界CO2注入煤层对顶板岩石纵波速度及力学响应特征研究[J]. 煤田地质与勘探, 2021, 49(5): 98-104. DOI: 10.3969/j.issn.1001-1986.2021.05.011
CHEN Chen, HE Xingyi, NIU Qinghe, YU Hongxu, XIE Xiangyu. Study on P-wave velocity and mechanical response characteristic of rock in coal seam roof with supercritical CO2 injection[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 98-104. DOI: 10.3969/j.issn.1001-1986.2021.05.011
Citation: CHEN Chen, HE Xingyi, NIU Qinghe, YU Hongxu, XIE Xiangyu. Study on P-wave velocity and mechanical response characteristic of rock in coal seam roof with supercritical CO2 injection[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 98-104. DOI: 10.3969/j.issn.1001-1986.2021.05.011

超临界CO2注入煤层对顶板岩石纵波速度及力学响应特征研究

Study on P-wave velocity and mechanical response characteristic of rock in coal seam roof with supercritical CO2 injection

  • 摘要: 深部煤层CO2地质封存与CH4强化开采(CO2–ECBM)技术在提高煤层气采收率的同时可实现碳减排,具有能源和环境双重效益。超临界CO2(ScCO2)、水和煤层顶板之间的地球化学反应可改变其物理力学性质,增加CO2泄漏的风险。以沁水盆地胡底煤矿3号煤层顶板岩石为研究对象,开展“ScCO2–水–岩”地球化学反应模拟实验,探讨CO2煤层封存条件下ScCO2–水–顶板岩样地球化学反应过程及其对岩石纵波速度和力学性质的影响。结果表明:ScCO2–水–岩之间化学溶蚀反应造成岩样Ca、Mg元素显著降低,促使岩样表面形成孤立状溶蚀孔,并随着反应时间的持续,进而形成大量的“溶蚀坑”和“溶蚀缝”;增加了岩样结构不连续性,使得声波传播路径增大、能量损失加剧,导致纵波波速降低;ScCO2–水–岩反应后岩样的峰值强度和弹性模量降低,泊松比升高,且三者之间的变化率与反应时间之间呈现Logistic函数的变化关系。对于胡底煤矿而言,ScCO2–水–岩反应过程中顶板力学性质的弱化不足以造成盖层的破裂和CO2泄漏,但在评价煤层CO2封存安全性时,还应考虑煤层吸附膨胀应力对顶板的影响。

     

    Abstract: Deep coal seam CO2 geological sequestration and enhanced CH4 recovery(CO2-ECBM) can both increase CBM recovery and achieve carbon emission reduction, possessing dual benefits of energy and environment. The geochemical reactions between supercritical CO2(ScCO2), water and coal seam roof can change its physical-mechanical properties and increase the risk of CO2 leakage. In this paper, taking the roof rock of No.3 coal seam in Hudi Mine from Qinshui Basin as the research area, the ScCO2-water-rock geochemical reaction simulation experiment was carried out to explore the geochemical reaction process of ScCO2-water-roof under the condition of CO2 coal seam storage and its influence on P-wave velocity and mechanical properties of rock. Results show that the chemical dissolution reaction between ScCO2, water and rock results in the significant decrease of Ca and Mg elements in the rock samples, which promotes the formation of isolated dissolution pores. And extensive "corrosion pits" and "corrosion fractures" are developed as the reaction time goes on. ScCO2-water-rock reaction raises the discontinuity of internal structure of rock samples, increases the propagation path and energy loss of acoustic wave, and reduces the P-wave velocity. After ScCO2-water-rock reaction, the peak strength and elastic modulus of rock samples decrease, while the Poisson's ratio increases. There is a logistic function relationship between peak strength change rate, elastic modulus change rate and Poisson's ratio change rate with reaction time. For this study area, the change of roof mechanical properties in the process of ScCO2-water-rock reaction is not enough to cause cap rock fractures and CO2 leakage, while the influence of adsorption swelling stress should also be emphasized when evaluating the security of CO2 geological storage in a coal seam.

     

/

返回文章
返回