留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高盐矿井水深部转移存储介质特征与水动力演化规律

刘琪 汪韦峻 罗斌 王厚柱 张志军

刘琪, 汪韦峻, 罗斌, 王厚柱, 张志军. 高盐矿井水深部转移存储介质特征与水动力演化规律[J]. 煤田地质与勘探, 2021, 49(5): 29-35. doi: 10.3969/j.issn.1001-1986.2021.05.003
引用本文: 刘琪, 汪韦峻, 罗斌, 王厚柱, 张志军. 高盐矿井水深部转移存储介质特征与水动力演化规律[J]. 煤田地质与勘探, 2021, 49(5): 29-35. doi: 10.3969/j.issn.1001-1986.2021.05.003
LIU Qi, WANG Weijun, LUO Bin, WANG Houzhu, ZHANG Zhijun. Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 29-35. doi: 10.3969/j.issn.1001-1986.2021.05.003
Citation: LIU Qi, WANG Weijun, LUO Bin, WANG Houzhu, ZHANG Zhijun. Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 29-35. doi: 10.3969/j.issn.1001-1986.2021.05.003

高盐矿井水深部转移存储介质特征与水动力演化规律

doi: 10.3969/j.issn.1001-1986.2021.05.003
基金项目: 

国家重点研发计划项目 2019YFC1805400

详细信息
    第一作者:

    刘琪,1998年生,男,山西吕梁人,硕士研究生,研究方向为水文地质与工程地质. E-mail: ts20010098a31ld@cumt.edu.cn

  • 中图分类号: TD74; TD82

Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well

  • 摘要: 高盐矿井水处理及排放是近几年影响煤炭高效开采的重要因素之一,选择开采煤层底板下深部适当的含水层,将高盐矿井水进行异位转移存储是一种值得探索的矿井水排放减量方法。以鄂尔多斯盆地X矿为例,分析认为开采煤层以下宝塔山砂岩和深层刘家沟组砂岩地层具备转移存储空间。采取压汞实验和岩石力学分析研究2组地层介质特征;采用水位自然恢复试验、压水试验和数值模拟等手段研究水文地质参数和水动力场特征。结果表明:宝塔山砂岩孔隙率为6.57%~19.89%,储水潜力大但距离开采煤层过近,转移存储矿井水可能引起底板突水威胁,现今开采阶段不考虑作为转移存储目的层;刘家沟组孔隙率为4.18%~7.49%,原始状态下渗透系数为5.31×10-6 m/d,注水压裂后为0.008 14~0.015 27 m/d,渗透能力大幅提升并可保持稳定;MODFLOW模拟结果表明,刘家沟组含水层在长期转移存储矿井水方面具备较好前景。

     

  • 图  开采煤层下地层柱状图

    Fig. 1  Columnar diagram of strata under mining coal seam

    图  单轴抗压强度测试结果

    Fig. 2  Uniaxial compressive strength test results

    图  MC-1孔水位自然恢复曲线

    Fig. 3  Natural recovery curve of water level in hole MC-1

    图  注水井井口水压和注水量变化曲线

    Fig. 4  Change curves of wellhead water pressure and water injection volume of injection well

    图  模拟60、180和360 d后刘家沟组流场变化

    Fig. 5  Flow field changes in Liujiagou Formation after 60, 180 and 360 days

    表  1  目标转移存储层孔隙分布及黏土含量

    Table  1  Pore distribution and clay content of the target transfer storage layer

    存储层 孔隙率/% < 100 nm孔隙占比/% 100~10 000 nm孔隙占比/% >10 000 nm孔隙占比/% 黏土质量分数/%
    宝塔山砂岩 6.57~19.89/14.53 5.75~17.55/11.31 66.85~83.80/74.87 10.45~15.60/13.82 12.70~25.90/17.13
    刘家沟组砂岩 4.18~7.49/5.50 14.40~42.54/25.78 20.48~65.02/36.89 20.98~55.86/37.33 11.20~23.50/17.45
    注:数据表示最小~最大值/平均值。
    下载: 导出CSV

    表  2  微孔隙结构特征[20]

    Table  2  Micropore structure characteristics[20]

    渗透性等级 孔径/nm 孔隙分布
    孔隙充满结合水 < 100 粒间和溶蚀孔隙
    重力水在较高水头下运动 100~10 000 粒间、晶间孔隙
    重力水一定水头下运动,毛细上升快且不高 10 000~106 颗粒内和粒间孔隙
    重力水可以自由运动 >106 晶粒间孔隙
    下载: 导出CSV

    表  3  转移存储层矿井水水质

    Table  3  Mine water quality of transfer storage layer

    水类型 TDS/(mg·L-1) PH值 水化学类型
    宝塔山砂岩水 653~1 452 11.40~11.70 CO3-Na
    刘家沟组砂岩水 65 111 5.35 Cl-Ca· Na
    矿井水 1 134~2 411 6.95~8.33 SO4-Na
    下载: 导出CSV

    表  4  注水试验求参成果

    Table  4  Results of water injection experiments

    序号 孔径/mm 水位差/m 渗透系数/(m·d-1)
    1 107 930 0.011 93
    3 700 0.010 62
    4 710 0.008 14
    5 750 0.010 51
    6 760 0.015 27
    下载: 导出CSV
  • [1] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907001.htm

    XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907001.htm
    [2] 范立民, 马雄德, 蒋泽泉, 等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术, 2019, 47(7): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201907001.htm

    FAN Limin, MA Xiongde, JIANG Zequan, et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology, 2019, 47(7): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201907001.htm
    [3] 缪协兴, 王安, 孙亚军, 等. 干旱半干旱矿区水资源保护性采煤基础与应用研究[J]. 岩石力学与工程学报, 2009, 28(2): 217-227.. doi: 10.3321/j.issn:1000-6915.2009.02.001

    MIAO Xiexing, WANG An, SUN Yajun, et al. Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 217-227.. doi: 10.3321/j.issn:1000-6915.2009.02.001
    [4] 王厚柱, 王桦. 鄂尔多斯侏罗纪煤田巨厚顶板砂岩含水层区域治理技术研究[J]. 煤炭工程, 2019, 51(10): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201910023.htm

    WANG Houzhu, WANG Hua. Study on regional control technology for ultra-thick sandstone aquifer of Jurassic coal seam roof in Ordos coalfield[J]. Coal Engineering, 2019, 51(10): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201910023.htm
    [5] 张念龙, 靳德武, 邵东梅. 采煤排水对区域水资源的影响: 以山西阳武河流域上游煤矿区为例[J]. 煤田地质与勘探, 2008, 36(4): 50-53.. doi: 10.3969/j.issn.1001-1986.2008.04.013

    ZHANG Nianlong, JIN Dewu, SHAO Dongmei. Affection analysis of coal mining drainage for regional water resources: Taking coal mining area of upper reaches of Yangwu river valley as example[J]. Coal Geology & Exploration, 2008, 36(4): 50-53.. doi: 10.3969/j.issn.1001-1986.2008.04.013
    [6] 邵飞燕. 含水层转移存储技术在神东矿区保水采煤研究中的应用[D]. 徐州: 中国矿业大学, 2008.

    SHAO Feiyan. Application of aquifer transfer storage technology in Shendong mining area[D]. Xuzhou: China University of Mining and Technology, 2008.
    [7] 武强, 王志强, 郭周克, 等. 矿井水控制、处理、利用、回灌与生态环保五位一体优化结合研究[J]. 中国煤炭, 2010, 36(2): 109-112.. doi: 10.3969/j.issn.1006-530X.2010.02.031

    WU Qiang, WANG Zhiqiang, GUO Zhouke, et al. A research on an optimized five-in-one combination of mine water control, treatment, utilization, back-filling and environment friendly treatment[J]. China Coal, 2010, 36(2): 109-112.. doi: 10.3969/j.issn.1006-530X.2010.02.031
    [8] 武强, 申建军, 王洋. "煤-水"双资源型矿井开采技术方法与工程应用[J]. 煤炭学报, 2017, 42(1): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701002.htm

    WU Qiang, SHEN Jianjun, WANG Yang. Mining techniques and engineering application for "Coal Water"dual-resources mine[J]. Journal of China Coal Society, 2017, 42(1): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701002.htm
    [9] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm
    [10] 钟伟, 高振记, 臧雅琼. 工业有害废液地下灌注国内外研究现状分析[J]. 环境工程技术学报, 2013, 3(3): 208-214.. doi: 10.3969/j.issn.1674-991X.2013.03.034

    ZHONG Wei, GAO Zhenji, ZANG Yaqiong. Review of research on underground injection technology for industrial hazardous waste disposal both at home and abroad[J]. Journal of Environmental Engineering Technology, 2013, 3(3): 208-214.. doi: 10.3969/j.issn.1674-991X.2013.03.034
    [11] KIM W Y. Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(7): 3506-3518.. doi: 10.1002/jgrb.50247
    [12] SARIPALLI K P, SHARMA M M, BRYANT S L. Modeling injection well performance during deep-well injection of liquid wastes[J]. Journal of Hydrology, 2000, 227(1/2/3/4): 41-55. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S002216949900164X&originContentFamily=serial&_origin=article&_ts=1483870101&md5=07f148517f32bb22918d618110976d1e
    [13] 杜新强, 路莹, 冶雪艳, 等. 地下水人工回灌过程中介质堵塞与水质变化研究进展[J]. 黑龙江大学工程学报, 2018, 9(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJZ201802002.htm

    DU Xinqiang, LU Ying, YE Xueyan, et al. Advances on porous medium clogging and water quality change during artificial recharge of groundwater[J]. Journal of Engineering of Heilongjiang University, 2018, 9(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJZ201802002.htm
    [14] 顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm

    GU Dazhao, ZHANG Yong, CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm
    [15] 刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.

    DIAO Yujie. Study on the reservoir characterization and CO2 migration underground in the Shenhua CCS demonstration project site[D]. Beijing: China University of Mining and Technology(Beijing), 2017.
    [16] 吕玉广, 刘宝开, 赵宝峰, 等. 侏罗系宝塔山砂岩水文地质特征与解危开采研究: 以新上海一号煤矿为例[J]. 煤田地质与勘探, 2020, 48(6): 170-178.. doi: 10.3969/j.issn.1001-1986.2020.06.023

    LYU Yuguang, LIU Baokai, ZHAO Baofeng, et al. Hydrogeological characteristics and danger-solving mining of Jurassic Baotashan sandstone: A case study in New Shanghai No. l coal mine[J]. Coal Geology & Exploration, 2020, 48(6): 170-178.. doi: 10.3969/j.issn.1001-1986.2020.06.023
    [17] 李德彬. 侏罗系煤田宝塔山砂岩含水层疏放水可行性研究[J]. 煤炭工程, 2019, 51(2): 92-96.. doi: 10.3969/j.issn.1008-4495.2019.02.021

    LI Debin. Study on the feasibility of water drainage for the Baotashan sandstone aquifer in Jurassic coal field[J]. Coal Engineering, 2019, 51(2): 92-96.. doi: 10.3969/j.issn.1008-4495.2019.02.021
    [18] 战沙, 张金功, 席辉. 鄂尔多斯盆地苏里格地区上古生界主要裂缝的测井识别[J]. 内蒙古石油化工, 2010, 36(10): 64-66.. doi: 10.3969/j.issn.1006-7981.2010.10.027

    ZHAN Sha, ZHANG Jin'gong, XI Hui. Log identification of main fractures in the Upper Paleozoic in Sulige area, Ordos Basin[J]. Inner Mongolia Petrochemical Industry, 2010, 36(10): 64-66.. doi: 10.3969/j.issn.1006-7981.2010.10.027
    [19] 王苏健, 冯洁, 侯恩科, 等. 砂岩微观孔隙结构类型及其对含水层富水性的影响: 以柠条塔井田为例[J]. 煤炭学报, 2020, 45(9): 3236-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009021.htm

    WANG Sujian, FENG Jie, HOU Enke, et al. Microscopic pore structure types of sandstone and its effects on aquifer water abundance: Taking in Ningtiaota coal mine as an example[J]. Journal of China Coal Society, 2020, 45(9): 3236-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009021.htm
    [20] 徐智敏, 高尚, 孙亚军, 等. 西部典型侏罗系富煤区含水介质条件与水动力学特征[J]. 煤炭学报, 2017, 42(2): 444-451. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201702024.htm

    XU Zhimin, GAO Shang, SUN Yajun, et al. A study of conditions of water bearing media and water dynamics in typical Jurassic coal rich regions in western China[J]. Journal of China Coal Society, 2017, 42(2): 444-451. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201702024.htm
    [21] 韩应伟, 王国伟, 马宏发. 泥质含量对砂岩力学性质及其破坏特征的影响规律研究[J]. 煤矿安全, 2019, 50(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201904011.htm

    HAN Yingwei, WANG Guowei, MA Hongfa. Influence of argillaceous content on mechanical properties and failure characteristics of sandstone[J]. Safety in Coal Mines, 2019, 50(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201904011.htm
    [22] 刘埔, 孙亚军. 闭坑矿井地下水污染及其防治技术探讨[J]. 矿业研究与开发, 2011, 31(4): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201104025.htm

    LIU Pu, SUN Yajun. Discussion on groundwater pollution caused by abandoned mines and its controlling techniques[J]. Mining Research and Development, 2011, 31(4): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201104025.htm
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  23
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 修回日期:  2021-08-10
  • 发布日期:  2021-10-25
  • 网络出版日期:  2021-11-06

目录

    /

    返回文章
    返回