留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国煤矿区矿井水污染问题及防控技术体系构建

孙亚军 徐智敏 李鑫 张莉 陈歌 赵先鸣 高雅婷 刘琪 张尚国 汪韦峻 朱璐璐 王晟

孙亚军, 徐智敏, 李鑫, 张莉, 陈歌, 赵先鸣, 高雅婷, 刘琪, 张尚国, 汪韦峻, 朱璐璐, 王晟. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探, 2021, 49(5): 1-16. doi: 10.3969/j.issn.1001-1986.2021.05.001
引用本文: 孙亚军, 徐智敏, 李鑫, 张莉, 陈歌, 赵先鸣, 高雅婷, 刘琪, 张尚国, 汪韦峻, 朱璐璐, 王晟. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探, 2021, 49(5): 1-16. doi: 10.3969/j.issn.1001-1986.2021.05.001
SUN Yajun, XU Zhimin, LI Xin, ZHANG Li, CHEN Ge, ZHAO Xianming, GAO Yating, LIU Qi, ZHANG Shangguo, WANG Weijun, ZHU Lulu, WANG Sheng. Mine water drainage pollution in China's coal mining areas and the construction of prevention and control technical system[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 1-16. doi: 10.3969/j.issn.1001-1986.2021.05.001
Citation: SUN Yajun, XU Zhimin, LI Xin, ZHANG Li, CHEN Ge, ZHAO Xianming, GAO Yating, LIU Qi, ZHANG Shangguo, WANG Weijun, ZHU Lulu, WANG Sheng. Mine water drainage pollution in China's coal mining areas and the construction of prevention and control technical system[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 1-16. doi: 10.3969/j.issn.1001-1986.2021.05.001

 

“煤矿区矿井水污染防控及深部转移存储技术”专题 编者按:
  我国煤矿区极其复杂的水文地质条件导致差异明显、特征各异的地下水环境。受矿井开采扰动和矿井疏排水等影响,煤矿区的矿井水污染和生态环境影响问题日益受到国家有关部门和煤炭企业的重视。近年来,国家政策和地方管理推动了煤矿区环境的改善,鼓励实现煤–水双资源协调开采,凸显出煤矿区地下水环境演化及矿井水污染防治方面的良好基础和研究前景。本刊依托中国矿业大学孙亚军教授负责的国家重点研发计划项目“煤矿区场地地下水污染防控材料与技术”(NO.2019YFC1805400)在煤矿区矿井水环境污染防控方面取得的阶段性系列研究成果,结合部分其他学者的相关科研成果设立本专题,选登6篇相关论文,以展现我国煤矿水文地质工作者在上述领域的最新研究进展和观点,以期引起学术界和产业界的更多关注和讨论,加速推进矿井水污染防控与矿区地下水环境保护方面的研究。

我国煤矿区矿井水污染问题及防控技术体系构建

doi: 10.3969/j.issn.1001-1986.2021.05.001
基金项目: 

国家重点研发计划项目 2019YFC1805400

中央高校基本科研业务费专项资金项目 2020ZDPY0201

详细信息
    第一作者:

    孙亚军,1963年生,男,安徽涡阳人,博士,教授,博士生导师,研究方向为矿井水害防治与污染防控. E-mail: syj@cumt.edu.cn

  • 中图分类号: X52; P641

Mine water drainage pollution in China's coal mining areas and the construction of prevention and control technical system

  • 摘要: 煤炭开采必然产生大量的矿井涌水,我国目前的矿井水整体上表现出水质相对较差、水处理成本较高等问题。首先明确了我国典型矿区矿井水水质的主体特征:常规离子是造成矿井水水质差的主要化学组分;矿井水中有毒有害物质占比小,且基本优于地下水Ⅲ类水质量标准。其次,详细探讨了我国矿井水水质形成、演化的几个科学问题,包括不同水文地质结构下物理–化学作用所起的主导作用,时间效应对水质演化的影响,微生物群落结构特征及其与环境因素的相关关系,水动力场–化学场–微生物场–温度场的多场耦合问题等。接着重点介绍矿井水污染防控的技术方法,以减少矿井突(涌)水量和水资源保护为前提,以实现煤–水双资源协调开采、煤炭绿色开采为目标,以矿井水“阻断、减量、保护”为主要防控思路,围绕煤矿区矿井水阻断技术、污染负荷减量技术、污染区修复治理等科学问题展开分析;通过各种现有技术、方法、工艺,最大可能地降低吨煤矿井水处理成本,如采用井下预处理、地面深度处理、超深回灌封贮、生态资源化利用等。最后,提出研发煤矿区地下水及污染物的阻断材料和吸附材料、注浆装备、监测设备、投料设备、原位取样检测设备等,形成我国煤矿区矿井水污染防控技术体系。该技术体系的构建可对煤矿绿色开采、煤矿区深层地下水污染防控、闭坑矿井水污染防控、矿区地下水资源及生态环境保护利用等提供理论及技术支撑。

     

  • 图  1  矿井水形成的概念模式

    Fig. 1  Conceptual model of the formation of mine water drainage

    图  2  山东某矿老空水中SO42-含量变化

    Fig. 2  Variation of SO42- content in goaf water of a mine in Shandong Province

    图  3  矿井水污染防控技术体系

    Fig. 3  Mine water pollution prevention and control technical system

    图  4  我国“十三五”期间闭坑矿井数量

    Fig. 4  The number of mine closures during the 13th Five-Year Plan period

    表  1  我国部分矿区矿井水水质总体特征

    Table  1  Overall characteristics of mine water quality at some mining areas of China 单位: mg/L

    典型矿区 项目 K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- NO3- 悬浮物 pH TDS 氟化物
    两淮矿区 数据量 51 51 51 52 51 51 44 49 6
    数据范围 10.50~1 514.14 2.81-331.60 2.19-120.60 1.80~2 631.35 1.00~1 447. 39.70~1 391.83 6.50-9.13 190.00~4 949.21 0.57-2.54
    中位数 332.00 52.30 26.18 245.50 116.16 370.37 8.20 1 585.66 1.48
    算术平均数 426.62 70.43 35.01 422.16 176.02 477.76 8.19 1 632.37 1.59
    鲁西南矿区 数据量 20 23 23 26 35 25 6 1 31 27 1
    数据范围 0.002~313.00 11.40~781.60 6.60-271.00 21.60~354.90 0.002~3 410.10 0~695.00 4.00-408.00 94.00 1.80~8.56 544.00~4 331.10 0.91
    中位数 80.95 276.60 116.00 52.75 1 031.70 256.00 15.52 7.51 2 111.40
    算术平均数 102.75 279.93 110.45 92.89 1 042.36 219.44 78.87 6.71 2 081.32
    山西矿区 数据量 28 72 83 80 80 84 73 29 8 44 75 7
    数据范围 2.80~160.70 36.24~958.94 0.24~975.30 0~1 657.00 8.06-342.02 2.26-10 080.40 12.52~1 566.49 0~15.00 72.65~239.90 2.75~11.61 286.00~12 247.00 0.25-3.58
    中位数 17.56 274.15 107.79 28.74 66.01 345.34 497.54 1.20 153.91 7.69 1 525.00 0.40
    算术平均值 22.85 307.99 187.26 114.55 89.34 858.35 546.40 3.27 153.89 6.89 1 721.12 1.25
    黄陇矿区 数据量 1 1 1 2 6 1 10 23 24 2 3
    数据范围 571.85 59.60 27.50 45.10~246.40 210.00~921.00 239.50 0.91-7.00 50.00~622.00 6.60-9.00 1 143.00~20578.00 0.60~1 595.00
    中位数 145.75 240.50 1.64 288.00 8.04 10 860.50 0.74
    算术平均值 145.75 351.00 2.21 286.10 7.92 10 860.50 0.97
    河南矿区 数据量 13 4 16 16 16 16 16 1 7 12 1
    数据范围 15.13~1215.81 10.32~197.80 2.81~349.08 3.52~138.02 10.95~590.25 27.37-2 786.09 227.21~570.84 0.73 7.15-8.30 333.04~4 949.26 1.51
    中位数 70.90 70.40 83.56 30.17 21.62 110.95 346.15 7.55 756.00
    算术平均值 300.67 87.23 116.77 38.63 87.48 542.36 378.23 7.68 1 554.40
    冀中矿区 数据量 23 14 23 23 23 23 23 1 3 16
    数据范围 0.90~1 104.20 7.60~82.40 18.60~287.80 2.80~893.80 14.65-2 121.90 26.26-2 006.10 152.10~667.30 83.25 7.13~8.70 345.20~6 330.50
    中位数 1.60 16.00 82.60 22.40 28.40 80.70 261.20 7.30 490.30
    算术平均值 111.17 26.03 102.45 59.85 183.72 218.89 287.91 7.71 1 095.34
    云贵矿区 数据量 11 11 11 11 11 16 11 11 42 66 11 8
    数据范围 0.90-12.30 0.70~3.70 77.84~144.00 8.02-99.12 3.81-10.00 100.00~2 903.85 0~158.00 1.66-30.36 34.00~1 296.00 2.40-8.83 292.53-2 402.81 0.20-2.60
    中位数 4.10 1.00 104.30 39.18 6.19 961.95 9.83 365.50 4.96 1 066.20 1.80
    算术平均值 5.17 1.25 110.60 46.80 6.67 1 174.00 12.12 385.67 5.20 1 118.80 1.43
    神东矿区 数据量 2 2 2 2 1 1 1 4 3 5 1 6
    数据范围 1.00-35.70 7.25-518.00 22.08~76.00 4.00-20.00 2.11-37.01 4.26~23.46 125.90~213.70 0.68-41.23 1.50~2 025.00 7.57-8.40 131.00~258.00 0.26-12.75
    中位数 6.00 236.80 47.00 13.06 0.87 404.00 7.70
    算术平均值 11.59 249.71 48.20 12.53 10.91 810.17 7.89
    宁东矿区 数据量 1 1 1 1 2 3 1 3 6 8 1
    数据范围 1.60-26.30 436.44~1218.50 43.39~424.80 78.66~318.18 141.05~1869.18 267.21~1878.95 4.67~234.00 24.00~92.00 6.95~9.65 185.20~6 247.00 2.20
    中位数 882.24 1 240.35 64.00 2 762.50
    算术平均值 1 005.11 1 245.00 60.00 8.19 2 911.27
    新疆矿区 数据量 1 1 1 5 2 1 3 4 7 4
    数据范围 5 332.11 716.02 440.44 42.80~7 110.30 12.00~6 643.00 337.51 16.00~2 378.00 6.14~8.70 410.00~21 404.00 0.21~0.37
    中位数 154.20 0.28
    算术平均值 1 558.96 0.29
    蒙东矿区 数据量 1 1 1 1 4 5 1 2 9 13 4 10
    数据范围 3.14 127.07 8.03 1.78 21.73-2 480.00 12.45~1 160.00 343.08 10.10~57.59 7.00~1 080.00 6.62-7.95 293.90~1 012.38 0.42~2 320.00
    中位数 90.19 40.76 34.84 160.00 7.46 570.71 1.26
    算术平均值 670.53 295.93 34.84 284.11 7.38 625.66 233.24
    典型矿区 项目 COD BOD 石油类 有机污染物 NH4+ Fe Mn Cu As Pb 有益元素 放射性元素(Bq/L)
    两淮矿区 数据量 11 9 7 5
    数据范围 0.06-2.63 0.002~48.86 0.000 14~0.09 1.33-9.07
    中位数 1.18 0.31 0.001 4.05
    算术平均数 0.67 11.01 0.016 4.83
    鲁西南矿区 数据量 6 3 1 3 8 1 1
    数据范围 0.57-600.00 1.74~20.00 15.00 0.10~1.01 0.50-478.00 26.00 0.02
    中位数 2.20 14.15 0.22 15.10
    算术平均数 112.37 11.96 0.44 91.20
    山西矿区 数据量 13 8 4 17 9 14
    数据范围 2.53-292.00 0.45-9.00 0.15-1.65 0.12~1 368.80 2.59~12 994.00 0.05~74.50
    中位数 49.80 2.69 0.39 2.79 1025.00 0.41
    算术平均值 83.13 3.80 0.65 195.09 3 080.68 16.48
    黄陇矿区 数据量 23 22 22 9 10 2 1 6 7 6
    数据范围 21.00~385.00 3.82-132.00 0.05-3.50 0.005~0.029 0.18-4.75 0.09-0.22 0.28 0.006 5~0.009 6 0.001~0.013 0.004 1~0.005 3
    中位数 188.00 62.75 0.41 0.007 1.51 0.16 0.008 8 0.008 2 0.004 6
    算术平均值 182.13 52.83 0.75 0.012 1.86 0.16 0.008 6 0.006 2 0.004 6
    河南矿区 数据量 1 1 1
    数据范围 4.79 0.18 0.07
    中位数
    算术平均值
    冀中矿区 数据量
    数据范围
    中位数
    算术平均值
    云贵矿区 数据量 53 8 27 12 37 53 4 33 4 8
    数据范围 1.44~839.47 1.80-13.60 0.01~4.64 0.86-50.70 0~1 166.00 0.05-30.00 2.50-4.58 0.000 3-0.60 0.25-0.69 0.003~0.010
    中位数 66.00 2.20 0.06 3.30 48.30 1.50 3.30 0.005 0.48 0.003
    算术平均值 111.87 3.59 0.54 19.02 117.04 3.57 3.42 0.07 0.48 0.004
    神东矿区 数据量 4 4 4 1 1
    数据范围 2.20~181.60 4.60~808.00 8.40-17.00 0.002 0.033
    中位数 11.73 408.20 14.50
    算术平均值 51.81 407.25 13.60
    宁东矿区 数据量 3 1
    数据范围 122.00~278.00 0.06~0.12
    中位数 125.00 0.09
    算术平均值 175.00 0.09
    新疆矿区 数据量 2 2 2 1 1 3 1
    数据范围 8.00-358.00 0-2.98 0.039~0.078 0.05 0.004 0-0.05 α≤1,总β≤10
    中位数
    算术平均值
    蒙东矿区 数据量 9 1 8 11 1 6
    数据范围 1.65~1 270.00 1.20 0.27-0.58 0.31-33.59 5.00 0.001~0.071
    中位数 21.55 0.46 0.70 0.01
    算术平均值 149.37 0.46 3.96 0.02
    注:pH值无量纲。
    下载: 导出CSV
  • [1] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm
    [2] WOLKERSDORFER C. Hydrogeochemistry of mine water[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 9-36.
    [3] BANKS D, YOUNGER P L, ARNESEN R T, et al. Mine-water chemistry: The good, the bad and the ugly[J]. Environmental Geology, 1997, 32(3): 157-174. doi: 10.1007/s002540050204
    [4] 杨建. 呼吉尔特矿区葫芦素煤矿水文地球化学特征研究[J]. 煤矿安全, 2016, 47(12): 203-206. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201612055.htm

    YANG Jian. Research on hydrogeochemical characteristics in Hulusu coal mine of Hujierte coal field[J]. Safety in Coal Mines, 2016, 47(12): 203-206. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201612055.htm
    [5] 李庭. 废弃矿井地下水污染风险评价研究[D]. 徐州: 中国矿业大学, 2014.

    LI Ting. Study on groundwater pollution risk assessment of abandoned coal mine[D]. Xuzhou: China University of Mining and Technology, 2014.
    [6] 陈歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ge. Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos Basin[D]. Xuzhou: China University of Mining and Technology, 2020.
    [7] 郑洁铭. 母杜柴登井田强碱性水质成因机制研究[D]. 徐州: 中国矿业大学, 2020.

    ZHENG Jieming. Study on genesis mechanism of strong alkali water quality in Muduchaideng minefield[D]. Xuzhou: China University of Mining and Technology, 2020.
    [8] 郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报, 2021, 46(6): 1966-1977. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202106028.htm

    HAO Chunming, ZHANG Wei, HE Ruimin, et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining district[J]. Journal of China Coal Society, 2021, 46(6): 1966-1977. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202106028.htm
    [9] SHAN Yao, QIN Yong, WANG Wenfeng. Chromium leaching mechanism of coal mine water: A modeling study based on Xuzhou-Datun coal mine district[J]. Mining Science and Technology, 2010, 20(1): 97-102. http://doc.paperpass.com/journal/20100076kykxjsc.html
    [10] DONG Donglin, LI Hongjiang, ZHANG Jie, et al. Removal of heavy metals from mine water by cyanobacterial calcification[J]. Mining Science and Technology(China), 2010, 20(4): 566-570. http://d.wanfangdata.com.cn/Periodical_zgkydxxb-e201004015.aspx
    [11] 张磊, 许光泉, 刘泽功, 等. A组煤层底板灰岩水水质特征及其形成机理[J]. 煤炭工程, 2010, 42(4): 60-63. doi: 10.3969/j.issn.1671-0959.2010.04.025

    ZHANG Lei, XU Guangquan, LIU Zegong, et al. Water quality characteristics and formation mechanism of limestone water in coal seam floor of Group A[J]. Coal Engineering, 2010, 42(4): 60-63. doi: 10.3969/j.issn.1671-0959.2010.04.025
    [12] 李林涛, 江永蒙, 郭毅定. 高硫酸盐矿井水综合处理产业化技术研究[J]. 煤田地质与勘探, 1999, 27(6): 51-53. doi: 10.3969/j.issn.1001-1986.1999.06.014

    LI Lintao, JIANG Yongmeng, GUO Yiding. The research of a comprehensive industrialization technology on the treatment of mining water containing much more sulphate anion[J]. Coal Geology & Exploration, 1999, 27(6): 51-53. doi: 10.3969/j.issn.1001-1986.1999.06.014
    [13] 李文生, 孙红福. 马兰煤矿矿井水水质变化特征及成因[J]. 煤田地质与勘探, 2013, 41(4): 46-49. doi: 10.3969/j.issn.1001-1986.2013.04.012

    LI Wensheng, SUN Hongfu. Variation characteristics and cause of mine water quality in Malan coal mine[J]. Coal Geology & Exploration, 2013, 41(4): 46-49. doi: 10.3969/j.issn.1001-1986.2013.04.012
    [14] 李喜林, 王来贵, 刘浩. 矿井水资源评价: 以阜新矿区为例[J]. 煤田地质与勘探, 2012, 40(2): 49-54. doi: 10.3969/j.issn.1001-1986.2012.02.012

    LI Xilin, WANG Laigui, LIU Hao. Mine water resource evaluation: With Fuxin mining area as an example[J]. Coal Geology & Exploration, 2012, 40(2): 49-54. doi: 10.3969/j.issn.1001-1986.2012.02.012
    [15] 刘江江. 沈阳矿区开发引起的主要环境矛盾和解决办法[J]. 煤炭工程, 2014, 46(4): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201404009.htm

    LIU Jiangjiang. Main environment contradictions occurred in development of Shenyang coal mining area and solution[J]. Coal Engineering, 2014, 46(4): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201404009.htm
    [16] 冯斌. 永城矿区地下水环境变化机理及其数值模拟研究[D]. 北京: 中国地质大学(北京), 2019.

    FENG Bin. Mechanism investigation and numerical modeling study on environmental groundwater changes in Yongcheng mining area, China[D]. Beijing: China University of Geosciences(Beijing), 2019.
    [17] 张成行, 郑洁铭, 徐智敏, 等. 基于水化学特征的顺和煤矿太灰水动力条件分析[J]. 煤炭工程, 2020, 52(6): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202006027.htm

    ZHANG Chenghang, ZHENG Jieming, XU Zhimin, et al. Hydrodynamic conditions analysis of Taiyuan Formation limestone aquifer in Shunhe coal mine based on hydrochemical characteristics[J]. Coal Engineering, 2020, 52(6): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202006027.htm
    [18] 葛光荣, 吴一平, 张全. 高矿化度矿井水纳滤膜适度脱盐技术研究[J]. 煤炭科学技术, 2021, 49(3): 208-214. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202103029.htm

    GE Guangrong, WU Yiping, ZHANG Quan. Research on technology and process for moderate desalination of high-salinity mine water by nanofiltration[J]. Coal Science and Technology, 2021, 49(3): 208-214. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202103029.htm
    [19] 房满义, 李雪妍, 张根, 等. 大柳塔煤矿地下水库水岩作用机理分析[J/OL]. 煤炭科学技术, 2021: 1-8[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200502.0813.002.html

    FANG Manyi, LI Xueyan, ZHANG Gen, et al. Discussion on water-rock interaction mechanism in underground reservoir of Daliuta coal mine[J/OL]. Coal Science and Technology, 2021: 1-8[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200502.0813.002.html
    [20] 曾建平. 宁夏红墩子矿区红二井田水文地质分析及水害预防[J]. 矿业安全与环保, 2012, 39(5): 60-62. doi: 10.3969/j.issn.1008-4495.2012.05.017

    ZENG Jianping. Hydrogeological analysis and flood prevention of Honger well field in Hongdunzi mining area, Ningxia[J]. Mining Safety and Environmental Protection, 2012, 39(5): 60-62. doi: 10.3969/j.issn.1008-4495.2012.05.017
    [21] 郭洋楠, 杨俊哲, 张政, 等. 神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水-岩作用机制[J/OL]. 煤炭学报, 2021: 1-15[2021-08-30]. https://doi.org/10.13225/j.cnki.jccs.2021.0388

    GUO Yangnan, YANG Junzhe, ZHANG Zheng, et al. Hydrogen and oxygen isotope characteristics of mine water in the Shendong mine area and water-rock reactions mechanism of the formation of high-fluoride mine water[J/OL]. Journal of China Coal Society, 2021: 1-15[2021-08-30]. https://doi.org/10.13225/j.cnki.jccs.2021.0388
    [22] 周俊丽, 王玉超. 神东矿区水质对乳化液稳定性影响的研究[J]. 煤炭科学技术, 2017, 45(7): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201707021.htm

    ZHOU Junli, WANG Yuchao. Study on water quality in Shendong mining area affected to stability of emulsion[J]. Coal Science and Technology, 2017, 45(7): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201707021.htm
    [23] 肖洁. 闭矿条件下矿井水中微生物群落分布及菲的生物降解特性[D]. 徐州: 中国矿业大学, 2016.

    XIAO Jie. Microbial community distribution and biodegradation characteristics of phenanthrene in closed mine water[D]. Xuzhou: China University of Mining and Technology, 2016.
    [24] 郝春明, 黄越, 黄玲, 等. 废弃煤矿矿井水中多环芳烃菲分布特征和来源解析[J]. 煤炭科学技术, 2018, 46(9): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809016.htm

    HAO Chunming, HUANG Yue, HUANG Ling, et al. Distribution characteristics and source analysis of polycyclic aromatic hydrocarbons phenantrene in abandoned coal mine water[J]. Coal Science and Technology, 2018, 46(9): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809016.htm
    [25] 高波. 关闭煤矿多环芳烃的赋存特征及生物降解机理研究[D]. 徐州: 中国矿业大学, 2019.

    GAO Bo. Study on occurrence and biodegradation mechanism of PAHs in closed coal mine[D]. Xuzhou: China University of Mining and Technology, 2019.
    [26] 单耀. 含煤地层水岩作用与矿井水环境效应[D]. 徐州: 中国矿业大学, 2009.

    SHAN Yao. Water-rock interaction in coal-bearing strata and environmental effect of coal mine water[D]. Xuzhou: China University of Mining and Technology, 2009.
    [27] 伍坤宇, 熊鹰, 谭秀成, 等. 储层孔隙系统"水-岩"反应结晶动力学研究进展[J/OL]. 沉积学报, 2021: 1-19[2021-08-30]. https://doi.org/10.14027/j.issn.1000-0550.2021.029

    WU Kunyu, XIONG Ying, TAN Xiucheng, et al. Study of the crystallization kinetics for"water-rock"interactions in the reservoir pore-system: An overview[J/OL]. Acta Sedimentologica Sinica, 2021: 1-19[2021-08-30]. https://doi.org/10.14027/j.issn.1000-0550.2021.029
    [28] 郭艳, 桂和荣, 魏久传, 等. 注浆工程扰动下煤系砂岩含水层水岩作用机理: 以桃园煤矿为例[J]. 煤田地质与勘探, 2021, 49(1): 232-240. doi: 10.3969/j.issn.1001-1986.2021.01.025

    GUO Yan, GUI Herong, WEI Jiuchuan, et al. Mechanism of water rock interaction in coal measure sandstone aquifer disturbed by grouting engineering: A case study of Taoyuan Coal Mine[J]. Coal Geology & Exploration, 2021, 49(1): 232-240. doi: 10.3969/j.issn.1001-1986.2021.01.025
    [29] 单爱琴, 张燕婷, 肖洁, 等. 废弃矿井微生物群落演替特征实验研究[J]. 环境科学与技术, 2019, 42(4): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201904006.htm

    SHAN Aiqin, ZHANG Yanting, XIAO Jie, et al. Experimental study of microbial community succession characteristics in abandoned mine groundwater[J]. Environmental Science & Technology, 2019, 42(4): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201904006.htm
    [30] 盛益之, 王广才, 刘莹, 等. 煤矿酸性矿井水主动式生物修复中铁的行为与归宿[J]. 地学前缘, 2018, 25(4): 299-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804031.htm

    SHENG Yizhi, WANG Guangcai, LIU Ying, et al. Behavior and fate of Fe in the active bioremediation of acidic coal mine drainage[J]. Earth Science Frontiers, 2018, 25(4): 299-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804031.htm
    [31] 谢宇轩. 高氯酸盐及其与硝酸盐氮、氨氮混合污染的微生物降解研究[D]. 北京: 中国地质大学(北京), 2014.

    XIE Yuxuan. Bioremediation of perchlorate and mixed contamination of perchlorate, nitrate-nitrogen and ammonia-nitrogen[D]. Beijing: China University of Geosciences(Beijing), 2014.
    [32] 李志建, 魏丽, 倪恒. 零价铁可渗透反应屏障钝化和堵塞研究进展及案例分析[J/OL]. 环境工程, 2021: 1-11[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2097.X.20210621.1023.004.html

    LI Zhijian, WEI Li, NI Heng. Research advances and case study on passivation and clogging in permeable reactive barrier[J/OL]. Environmental Engineering, 2021: 1-11[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2097.X.20210621.1023.004.html
    [33] 祁宝川, 韩志勇, 陈吉祥. PRB修复重金属污染地下水的反应介质研究进展[J]. 应用化工, 2017, 46(4): 749-754. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201704038.htm

    QI Baochuan, HAN Zhiyong, CHEN Jixiang. The research progress of PRB reaction medium for remediation of heavy metal contaminated groundwater[J]. Applied Chemical Industry, 2017, 46(4): 749-754. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201704038.htm
    [34] 刘钦. 哈密矿区侏罗系弱胶结砂岩结构及渗流模型研究[D]. 徐州: 中国矿业大学, 2018.

    LIU Qin. Study on the structure and seepage model of Jurassic weak cemented sandstone in Hami mining area[D]. Xuzhou: China University of Mining and Technology, 2018.
    [35] 冯志强, 康红普. 新型聚氨酯堵水注浆材料的研究及应用[J]. 岩土工程学报, 2010, 32(3): 375-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003013.htm

    FENG Zhiqiang, KANG Hongpu. Development and application of new waterproof grouting materials of polyurethane[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 375-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003013.htm
    [36] 冯志强, 康红普. 破碎煤岩体化学注浆堵水技术研究及示范工程[J]. 长江科学院院报, 2009, 26(7): 60-65. doi: 10.3969/j.issn.1001-5485.2009.07.015

    FENG Zhiqiang, KANG Hongpu. Technology research of chemical grouting for cracked coal-rock mass and demonstration project[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(7): 60-65. doi: 10.3969/j.issn.1001-5485.2009.07.015
    [37] 冯志强. 破碎煤岩体化学注浆加固材料研制及渗透扩散特性研究[D]. 北京: 煤炭科学研究总院, 2007.

    FENG Zhiqiang. Material development and research of osmosis and diffusion on chemical grouting for extraordinary cracked coal and rockmass[D]. Beijing: China Coal Research Institute, 2007.
    [38] 闫勇, 郑秀华. 水泥-水玻璃浆液性能试验研究[J]. 水文地质工程地质, 2004, 31(1): 71-72. doi: 10.3969/j.issn.1000-3665.2004.01.017

    YAN Yong, ZHENG Xiuhua. Experimental study on properties of cement-sodium silicate grout[J]. Hydrogeology & Engineering Geology, 2004, 31(1): 71-72. doi: 10.3969/j.issn.1000-3665.2004.01.017
    [39] 刘玉亭. 煤矿用高安全性聚氨酯注浆加固材料的制备及其性能研究[D]. 合肥: 合肥工业大学, 2013.

    LIU Yuting. The preparation and properties of security polyurethane grouting material for reinforcement in coal mine[D]. Hefei: Hefei University of Technology, 2013.
    [40] 张志耕, 张亚峰, 邝健政, 等. 聚氨酯改性环氧丙烯酸酯灌浆材料的制备[J]. 新型建筑材料, 2006(4): 56-59. doi: 10.3969/j.issn.1001-702X.2006.04.021

    ZHANG Zhigeng, ZHANG Yafeng, KUANG Jianzheng, et al. Preparation of epoxy acrylate grouting material modified by polyurethane[J]. New Building Material, 2006(4): 56-59. doi: 10.3969/j.issn.1001-702X.2006.04.021
    [41] 王正胜, 宋雪飞, 吕华文. 丙烯酸盐注浆材料实验研究及其应用[J]. 煤炭工程, 2013, 45(增刊1): 140-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ2013S1052.htm

    WANG Zhengsheng, SONG Xuefei, LYU Huawen. Experimental study and application of acrylate grouting material[J]. Coal Engineering, 2013, 45(Sup. 1): 140-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ2013S1052.htm
    [42] 王杰, 孙海峰, 杜嘉鸿. 无铬盐木素类注浆材料的试验研究[J]. 沈阳建筑大学学报(自然科学版), 2006, 22(6): 895-898. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200606004.htm

    WANG Jie, SUN Haifeng, DU Jiahong. The study on grouting agent of Lignin without chrome salt[J]. Journal of Shenyang Jianzhu University(Natural Science), 2006, 22(6): 895-898. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200606004.htm
    [43] 张成满, 殷永法, 王慨慷. 国内隧道围岩注浆设备的现状及选型[J]. 铁道建筑技术, 1997(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS199705009.htm

    ZHANG Chengman, YIN Yongfa, WANG Kaikang. Status and selection of grouting equipment for surrounding rock of tunnel in China[J]. Railway Construction Technology, 1997(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS199705009.htm
    [44] 王传永, 汪佩, 李向阳. 新型注浆设备在地质防治水超前探施工中的应用[J]. 现代矿业, 2015(12): 243-244. doi: 10.3969/j.issn.1674-6082.2015.12.097

    WANG Chuanyong, WANG Pei, LI Xiangyang. Application of new grouting equipment in geological control water advanced exploration construction[J]. Modern Mining, 2015(12): 243-244. doi: 10.3969/j.issn.1674-6082.2015.12.097
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  29
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 修回日期:  2021-08-30
  • 刊出日期:  2021-10-25
  • 网络出版日期:  2021-11-06

目录

    /

    返回文章
    返回