留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前置酸压裂提高煤层气单井产量机理与适用性研究

范耀

范耀. 前置酸压裂提高煤层气单井产量机理与适用性研究[J]. 煤田地质与勘探, 2021, 49(4): 153-161. doi: 10.3969/j.issn.1001-1986.2021.04.018
引用本文: 范耀. 前置酸压裂提高煤层气单井产量机理与适用性研究[J]. 煤田地质与勘探, 2021, 49(4): 153-161. doi: 10.3969/j.issn.1001-1986.2021.04.018
FAN Yao. Mechanism and applicability of increasing coalbed methane well production by pre-positioned acid fracturing[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 153-161. doi: 10.3969/j.issn.1001-1986.2021.04.018
Citation: FAN Yao. Mechanism and applicability of increasing coalbed methane well production by pre-positioned acid fracturing[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 153-161. doi: 10.3969/j.issn.1001-1986.2021.04.018

前置酸压裂提高煤层气单井产量机理与适用性研究

doi: 10.3969/j.issn.1001-1986.2021.04.018
基金项目: 

陕西省创新能力支撑计划项目 2018TD-039

详细信息
    第一作者:

    范耀,1983年生,男,陕西咸阳人,博士研究生,副研究员,从事煤层气地质与勘探开发工作. E-mail:fanyao@cctegxian.com

  • 中图分类号: P634

Mechanism and applicability of increasing coalbed methane well production by pre-positioned acid fracturing

  • 摘要: 针对目前我国煤层气地面开发单井产量低、开发效益差的现状,为探索研究适用于煤层气井的经济高效增产改造技术,借鉴常规油气藏前置酸压裂技术的成功经验,采集焦坪矿区4-2煤层煤样,进行前置酸改善压裂效果评价实验,结合宏观观察、X射线衍射分析及扫描电镜–能谱手段对比分析实验前后矿物质成分与含量变化,研究前置酸压裂技术煤层增产机理和适用条件。结果表明:前置酸可改善煤储层孔裂隙之间连通性,大大降低压裂液本身对煤层的伤害,改造效果显著;酸化溶解(堵塞和填隙物质)为主要增产机理,形成不规则酸岩溶蚀面、酸盐反应生成CO2促进CH4解吸等作用是辅助增产机理;前置酸压裂技术适用于含矿物质较高、渗透性较差煤层增产改造和近井地带解堵,首选富含方解石、白云石、菱铁矿和赤铁矿等酸溶性充填物为主的煤层,对于含有较高黏土矿物的煤层或以解除近井地带污染为目的,重点考虑减少二次沉淀带来的负效应问题。建议采用二次沉淀物预防措施、综合防滤失技术、低密度支撑剂、低伤害/高黏度压裂液等对策来解决前置酸酸化后二次伤害和煤层压裂液滤失大的问题。

     

  • 图  煤心样

    Fig. 1  Core samples

    图  方解石扫描电镜–能谱分析

    Fig. 2  SEM-EDS analysis of calcite

    图  白云石扫描电镜–能谱分析

    Fig. 3  SEM-EDS analysis of dolomite

    图  高岭石扫描电镜–能谱分析

    Fig. 4  SEM-EDS analysis of kaolinite

    图  石英扫描电镜–能谱分析

    Fig. 5  SEM-EDS analysis of quartz

    图  实验样品

    Fig. 6  Experimental samples

    图  酸化前后煤样

    Fig. 7  Coal samples before and after acidification

    图  酸化前后扫描电镜照片

    Fig. 8  SEM photos before and after acidification

    表  1  煤心X衍射定量分析结果

    Table  1  Quantitative analysis results of X-ray diffraction of coal core samples

    煤样号 矿物质量分数/%
    高岭石 方解石 白云石 石英 锐钛矿 菱铁矿 赤铁矿 磷灰石 有机碳 未检出
    1 5 19 10 8 0 0 0 2 55 1
    2 6 20 8 8 0 0 0 2 55 1
    3 5 19 9 7 0 0 0 3 56 1
    4 10 10 5 3 1 2 1 1 67 0
    平均 6.50 17.00 8.00 6.50 0.25 0.50 0.25 2.00 58.25 0.75
    下载: 导出CSV

    表  2  前置酸压裂液对煤样影响评价结果

    Table  2  Evaluation results of influence of pre-positioned acid fracturing on coal core samples

    压裂液类型 克氏渗透率/10–3 μm2 孔隙率/% 渗透率变化率/%
    活性水 0.499 8 3.52 10.87
    0.256 0 3.31 8.98
    0.929 9 3.63 14.96
    15%盐酸体系+活性水 0.256 1 2.46 –154.44
    0.175 1 3.40 –276.01
    下载: 导出CSV

    表  3  溶蚀后煤心X衍射定量分析结果

    Table  3  Quantitative analysis results of X-ray diffraction of acidification coal core samples

    煤样 矿物质量分数/%
    高岭石 方解石 白云石 石英 锐钛矿 菱铁矿 赤铁矿 磷灰石 有机碳
    1 8 0 0 3 1 0 0 1 87
    2 6 0 0 5 0 0 0 2 87
    平均 7 0 0 4 0.5 0 0 1.5 87
    下载: 导出CSV
  • [1] 门相勇, 韩征, 宫厚健, 等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业, 2018, 38(9): 10-16.

    MEN Xiangyong, HAN Zheng, GONG Houjian, et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry, 2018, 38(9): 10-16.
    [2] 王成旺, 冯延青, 杨海星, 等. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用[J]. 煤田地质与勘探, 2018, 46(5): 212-218.. doi: 10.3969/j.issn.1001-1986.2018.05.033

    WANG Chengwang, FENG Yanqing, YANG Haixing, et al. Potential-tapping technology and its application in old CBM wells in Hancheng block of Ordos Basin[J]. Coal Geology & Exploration, 2018, 46(5): 212-218.. doi: 10.3969/j.issn.1001-1986.2018.05.033
    [3] 徐凤银, 肖芝华, 陈东, 等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术, 2019, 47(10): 205-215.

    XU Fengyin, XIAO Zhihua, CHEN Dong, et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology, 2019, 47(10): 205-215.
    [4] 李登华, 高煖, 刘卓亚, 等. 中美煤层气资源分布特征和开发现状对比及启示[J]. 煤炭科学技术, 2018, 46(1): 252-261.

    LI Denghua, GAO Xuan, LIU Zhuoya, et al. Comparison and revelation of coalbed methane resources distribution characteristics and development status between China and America[J]. Coal Science and Technology, 2018, 46(1): 252-261.
    [5] 程林林, 程远方, 祝东峰, 等. 体积压裂技术在煤层气开采中的可行性研究[J]. 新疆石油地质, 2014, 35(5): 598-602.

    CHENG Linlin, CHENG Yuanfang, ZHU Dongfeng, et al. Feasibility study on application of volume fracturing technology to coalbed methane(CBM) development[J]. Xinjiang Petroleum Geology, 2014, 35(5): 598-602.
    [6] 李莹, 郑瑞, 罗凯, 等. 筠连地区煤层气低产低效井成因及增产改造措施[J]. 煤田地质与勘探, 2020, 48(4): 146-155.. doi: 10.3969/j.issn.1001-1986.2020.04.021

    LI Ying, ZHENG Rui, LUO Kai, et al. Reasons of low yield and stimulation measures for CBM wells in Junlian area[J]. Coal Geology & Exploration, 2020, 48(4): 146-155.. doi: 10.3969/j.issn.1001-1986.2020.04.021
    [7] 秦兴林. 煤体孔隙结构及渗透率对不同时长酸化作用的响应规律研究[J]. 煤矿安全, 2020, 51(12): 18-22.

    QIN Xinglin. Study on response law of coal pore structure and permeability affected by different time of acidification[J]. Safety in Coal Mines, 2020, 51(12): 18-22.
    [8] 秦勇, 李恒乐, 张永民, 等. 基于地质-工程条件约束的可控冲击波煤层致裂行为数值分析[J]. 煤田地质与勘探, 2021, 49(1): 108-118.. doi: 10.3969/j.issn.1001-1986.2021.01.011

    QIN Yong, LI Hengle, ZHANG Yongmin, et al. Numerical analysis on CSW fracturing behavior of coal seam under constraint of geological and engineering conditions[J]. Coal Geology & Exploration, 2021, 49(1): 108-118.. doi: 10.3969/j.issn.1001-1986.2021.01.011
    [9] 武杰, 田永东. 高聚能电脉冲技术在沁水盆地煤层气井的应用[J]. 煤田地质与勘探, 2018, 46(5): 206-211.. doi: 10.3969/j.issn.1001-1986.2018.05.032

    WU Jie, TIAN Yongdong. Application of high energy electric pulse technology in coalbed methane wells in Qinshui Basin[J]. Coal Geology & Exploration, 2018, 46(5): 206-211.. doi: 10.3969/j.issn.1001-1986.2018.05.032
    [10] 吴晋军, 武进壮, 徐东升, 等. 浅层煤层气强脉冲射孔压裂工艺试验研究[J]. 煤炭技术, 2016, 35(10): 10-12.

    WU Jinjun, WU Jinzhuang, XU Dongsheng, et al. Experimental study on fracturing process of strong pulse perforation in shallow CBM reservoir[J]. Coal Technology, 2016, 35(10): 10-12.
    [11] 范耀, 张群. 高压水射流极小半径钻井技术研究现状与展望应用[J]. 煤田地质与勘探, 2020, 48(5): 232-239.. doi: 10.3969/j.issn.1001-1986.2020.05.029

    FAN Yao, ZHANG Qun. Review of the tight radius drilling technology based on high pressure water jet[J]. Coal Geology & Exploration, 2020, 48(5): 232-239.. doi: 10.3969/j.issn.1001-1986.2020.05.029
    [12] 苏现波, 夏大平, 赵伟仲, 等. 煤层气生物工程研究进展[J]. 煤炭科学技术, 2020, 48(6): 1-30.

    SU Xianbo, XIA Daping, ZHAO Weizhong, et al. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology, 2020, 48(6): 1-30.
    [13] 曹运兴, 石玢, 周丹, 等. 煤层气低产井高压氮气闷井增产改造技术与应用[J]. 煤炭学报, 2019, 44(8): 2556-2565.

    CAO Yunxing, SHI Bin, ZHOU Dan, et al. Study and application of stimulation technology for low production CBM well through high pressure N2 injection-soak[J]. Journal of China Coal Society, 2019, 44(8): 2556-2565.
    [14] 李永, 林柏泉, 杨凯, 等. 注热蒸汽后的煤体微观孔裂隙演化规律[J]. 煤炭科学技术, 2019, 47(12): 102-108.

    LI Yong, LIN Baiquan, YANG Kai, et al. Evolution law of microscopic pore fractures of coal after hot steam injection[J]. Coal Science and Technology, 2019, 47(12): 102-108.
    [15] 杨新乐, 秘旭晴, 张永利, 等. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.

    YANG Xinle, MI Xuqing, ZHANG Yongli, et al. Numerical simulation of migration and output law of coal-bed methane in heat injection combined well group mining[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1100-1108.
    [16] 伊向艺, 雷群, 丁云宏, 等. 煤层气压裂技术及应用[M]. 北京: 石油工业出版社, 2012.

    YI Xiangyi, LEI Qun, DING Yunhong, et al. Coalbed methane fracturing technology and application[M]. Beijing: Petroleum Industry Press, 2012.
    [17] 罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6): 1-6.

    LUO Pingya. A discussion on how to significantly improve the single-well productivity of CBM gas wells in China[J]. Natural Gas Industry, 2013, 33(6): 1-6.
    [18] 段连秀, 王生维, 张明. 煤储层中裂隙充填物的特征及其研究意义[J]. 煤田地质与勘探, 1999, 27 (3): 33-35.. doi: 10.3969/j.issn.1001-1986.1999.03.010

    DUAN Lianxiu, WANG Shengwei, ZHANG Ming. The characteristics of the fracture fillings in coal reservoirs and its study significance[J]. Coal Geology & Exploration, 1999, 27(3): 33-35.. doi: 10.3969/j.issn.1001-1986.1999.03.010
    [19] 刘新兵. 我国若干煤中矿物质的研究[J]. 中国矿业大学学报, 1994, 23(4): 109-114.. doi: 10.3321/j.issn:1000-1964.1994.04.001

    LIU Xinbing. The mineral matter characteristics of some Chinese coals[J]. Journal of China University of Mining & Technology, 1994, 23(4): 109-114.. doi: 10.3321/j.issn:1000-1964.1994.04.001
    [20] 康永尚, 孙良忠, 张兵, 等. 中国煤储层渗透率主控因素和煤层气开发对策[J]. 地质评论, 2017, 63(5): 1401-1418.

    KANG Yongshang, SUN Liangzhong, ZHANG Bing, et al. The controlling factors of coalbed reservoir permeability and CBM development strategy in China[J]. Geological Review, 2017, 63(5): 1401-1418.
    [21] 李瑞, 王坤, 王于健. 提高煤岩渗透性的酸化处理室内研究[J]. 煤炭学报, 2014, 39(5): 913-917.

    LI Rui, WANG Kun, WANG Yujian. Indoor study on acidification for enhancing the permeability of coal[J]. Journal of China Coal Society, 2014, 39(5): 913-917.
    [22] 倪小明, 李全中, 王延斌, 等. 多组分酸对不同煤阶煤储层化学增透实验研究[J]. 煤炭学报, 2014, 39(增刊2): 436-440.

    NI Xiaoming, LI Quanzhong, WANG Yanbin, et al. Experimental study on chemical permeability improvement of different rank coal reservoirs using multi-component acid[J]. Journal of China Coal Society, 2014, 39(Sup. 2): 436-440.
    [23] 李胜, 罗明坤, 范超军, 等. 基于核磁共振和低温氮吸附的煤层酸化增透效果定量表征[J]. 煤炭学报, 2017, 42(7): 1748-1756.

    LI Sheng, LUO Mingkun, FAN Chaojun, et al. Quantitative characterization of the effect of acidification in coals by NMR and low-temperature nitrogen adsorption[J]. Journal of China Coal Society, 2017, 42(7): 1748-1756.
    [24] 贾男. 煤层脉动式酸化压裂增透技术及其应用[J]. 中国安全科学学报, 2020, 30(10): 75-81.

    JIA Nan. Research and application of pulsating acid fracturing technology in coal seam[J]. China Safety Science Journal, 2020, 30(10): 75-81.
    [25] 王镜惠, 梅明华, 刘娟, 等. 煤层气井酸化压裂增产机理及施工程序优化[J]. 当代化学, 2020, 49(9): 1892-1895.

    WANG Jinghui, MEI Minghua, LIU Juan, et al. Optimization of stimulation mechanism and construction scheme of acidizing fracturing in coalbed gas wells[J]. Contemporary Chemical Industry, 2020, 49(9): 1892-1895.
    [26] 徐永高, 赵振峰, 李宪文, 等. 前置酸酸液和前置酸加砂压裂方法: 200810106229.8[P]. 2008-05-09.

    XU Yonggao, ZHAO Zhenfeng, LI Xianwen, et al. Pad acid liquid and pad acid sand fracturing method: 200810106229.8[P]. 2008-05-09.
    [27] 杨永华. 砂岩储层酸压可行性研究[D]. 南充: 西南石油学院, 2004.

    YANG Yonghua. Feasibility study on acid fracturing of sandstone reservoir[D]. Nanchong: Southwest Petroleum Institute, 2004.
    [28] 沈桂川, 魏江伟, 蒲三龙, 等. 前置酸压裂工艺在姬塬油田延长组老井油层改造中应用[J]. 石化技术, 2015, 22(9): 167-168.. doi: 10.3969/j.issn.1006-0235.2015.09.126

    SHEN Guichuan, WEI Jiangwei, PU Sanlong, et al. Application of prepositioned acid fracturing in reservoir improvement in Yanchang Group of Jiyuan Oilfield[J]. Petrochemical Industry Technology, 2015, 22(9): 167-168.. doi: 10.3969/j.issn.1006-0235.2015.09.126
    [29] 蒋文学, 葛海江, 宁忠宏, 等. 环82区长8酸敏储层前置酸压裂技术研究与应用[J]. 钻采工艺, 2015, 38(1): 69-71.. doi: 10.3969/J.ISSN.1006-768X.2015.01.20

    JIANG Wenxue, GE Haijiang, NING Zhonghong, et al. Research and application of the prepositioned acid fracturing technique in Chang 8 acid-sensitive reservoir[J]. Drilling & Production Technology, 2015, 38(1): 69-71.. doi: 10.3969/J.ISSN.1006-768X.2015.01.20
    [30] 何鹏, 刘寒梅, 李向东, 等. 前置酸压裂技术在低渗透油田中的研究与应用[J]. 延安大学学报(自然科学版), 2013, 32(2): 78-85.. doi: 10.3969/J.ISSN.1004-602X.2013.02.078

    HE Peng, LIU Hanmei, LI Xiangdong, et al. Research and application of the pre-positioned acid fracturing technology in low permeability oilfield[J]. Journal of Yan'an University(Natural Science Edition), 2013, 32(2): 78-85.. doi: 10.3969/J.ISSN.1004-602X.2013.02.078
    [31] 何火华, 黄伟, 王鹏. 水平井前置酸加砂压裂技术优化研究[J]. 非常规油气, 2020, 7(2): 109-113.. doi: 10.3969/j.issn.2095-8471.2020.02.016

    HE Huohua, HUANG Wei, WANG Peng. Research on optimization of pre-acid sand fracturing technology for horizontal wells[J]. Unconventional Oil & Gas Petroleum, 2020, 7(2): 109-113.. doi: 10.3969/j.issn.2095-8471.2020.02.016
    [32] 吴月先. 青海油气田推广应用酸化与加砂压裂直接协同工艺技术前景[J]. 青海石油, 2009, 27(2): 69-73.

    WU Yuexian. Application prospect of direct synergistic technology of acidizing and sand fracturing in Qinghai oil and gas field[J]. Qinghai Shiyou, 2009, 27(2): 69-73.
    [33] 刘威, 章江, 张超平, 等. 自生酸前置压裂液在碳酸盐岩储层中的室内实验评价[J]. 科学技术与工程, 2020, 20(3): 1051-1056.. doi: 10.3969/j.issn.1671-1815.2020.03.026

    LIU Wei, ZHANG Jiang, ZHANG Chaoping, et al. Indoor experimental evaluation of autogenic acid fracturing fluid in carbonate reservoir[J]. Science Technology and Engineering, 2020, 20(3): 1051-1056.. doi: 10.3969/j.issn.1671-1815.2020.03.026
    [34] 章炜, 张林, 张延平. 前置酸加砂压裂提高油田单井产量的可行性分析[J]. 科技经济导刊, 2017 (11): 107-107.

    ZHANG Wei, ZHANG Lin, ZHANG Yanping. Feasibility analysis of increasing single well production by pre acid sand fracturing[J]. Technology and Economic Guide, 2017(11): 107-107.
    [35] 顾燕凌, 樊红旗, 刘运强. 前置酸压裂工艺在低渗砂岩储层中的试验与评价[J]. 油气田地面工程, 2008, 27(8): 4-5.. doi: 10.3969/j.issn.1006-6896.2008.08.002

    GU Yanling, FAN Hongqi, LIU Yunqiang. Test and evaluation of pre-positioned acid fracturing technology in low permeability sandstone reservoir[J]. Oil-Gasfield Surface Engineering, 2008, 27(8): 4-5.. doi: 10.3969/j.issn.1006-6896.2008.08.002
    [36] 张遂安, 霍永忠, 叶建平, 等. 煤层气的置换解吸实验及机理探索[J]. 科学通报, 2005, 50(增刊1): 143-146.

    ZHANG Sui'an, HUO Yongzhong, YE Jianping, et al. Experiment and mechanism exploration of displacement and desorption of coalbed methane[J]. Chinese Science Bulletin, 2005, 50(Sup. 1): 143-146.
    [37] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探, 2018, 46(5): 1-9.. doi: 10.3969/j.issn.1001-1986.2018.05.001

    SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration, 2018, 46(5): 1-9.. doi: 10.3969/j.issn.1001-1986.2018.05.001
    [38] 范耀, 茹婷, 李彬刚, 等. 焦坪矿区侏罗纪煤层地面煤层气井压裂液优选实验[J]. 煤田地质与勘探, 2014, 42 (3): 40-42.. doi: 10.3969/j.issn.1001-1986.2014.03.009

    FAN Yao, RU Ting, LI Bingang, et al. Fracturing fluid experiment for coalbed methane wells of Jurassic coal in Jiaoping block[J]. Coal Geology & Exploration, 2014, 42 (3): 40-42.. doi: 10.3969/j.issn.1001-1986.2014.03.009
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  18
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 修回日期:  2021-03-31
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回