留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚煤环境分区的煤体结构测井判别及应用——以沁水盆地南部马必东地区为例

张建国 韩晟 张聪 陈彦君

张建国, 韩晟, 张聪, 陈彦君. 基于聚煤环境分区的煤体结构测井判别及应用——以沁水盆地南部马必东地区为例[J]. 煤田地质与勘探, 2021, 49(4): 114-122. doi: 10.3969/j.issn.1001-1986.2021.04.014
引用本文: 张建国, 韩晟, 张聪, 陈彦君. 基于聚煤环境分区的煤体结构测井判别及应用——以沁水盆地南部马必东地区为例[J]. 煤田地质与勘探, 2021, 49(4): 114-122. doi: 10.3969/j.issn.1001-1986.2021.04.014
ZHANG Jianguo, HAN Sheng, ZHANG Cong, CHEN Yanjun. Coal body structure identification by logging based on coal accumulation environment zoning and its application in Mabidong Block, Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 114-122. doi: 10.3969/j.issn.1001-1986.2021.04.014
Citation: ZHANG Jianguo, HAN Sheng, ZHANG Cong, CHEN Yanjun. Coal body structure identification by logging based on coal accumulation environment zoning and its application in Mabidong Block, Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 114-122. doi: 10.3969/j.issn.1001-1986.2021.04.014

基于聚煤环境分区的煤体结构测井判别及应用——以沁水盆地南部马必东地区为例

doi: 10.3969/j.issn.1001-1986.2021.04.014
基金项目: 

国家科技重大专项项目 2017ZX05064

中国石油天然气股份有限公司重大科技专项课题 2017E-1405

详细信息
    第一作者:

    张建国,1967年生,男,河北邢台人,高级工程师,从事煤层气勘探开发相关研究工作. E-mail:mcz_zjg@petrochina.com.cn

    通信作者:

    韩晟,1992年生,男,河北栾城人,硕士,工程师,从事煤层气储层预测工作. E-mail:yjy_hans@petrochina.com.cn

  • 中图分类号: P631.8

Coal body structure identification by logging based on coal accumulation environment zoning and its application in Mabidong Block, Qinshui Basin

  • 摘要: 煤体结构的测井曲线判别是一种高效经济的地球物理判别方法,但是受沉积环境和煤储层物性等因素影响,测井曲线具有多解性,造成煤体结构测井响应不明显,由此得到的判别方法也会有区域局限性。因此,在进行测井判别之前,需要对除煤体结构以外的影响测井曲线的因素加以控制。以沁水盆地马必东区块3号煤为例,首先利用煤心灰分与伽马测井曲线的正相关性进行煤心归位,以确保测井深度与取心深度的一致性;再利用煤心的镜质组与惰质组含量之比(镜惰比)对工区的聚煤环境进行分区,并优选聚煤环境相近分区的测井曲线。结果表明,电阻率系列曲线可以较清晰地反映该地区的煤体结构,受探测深度的影响,声波曲线无法准确地反映该地区煤体结构的变化规律。利用取心井训练的多测井曲线随机森林模型对未取心井煤体结构进行预测和判定,实测压裂曲线检验表明,预测结果与实测数据吻合率高。应用表明,基于聚煤环境分区的煤体结构测井判别方法可以反映煤体结构分布规律,指导压裂工作,降低煤层气开发成本,且有助于指导跨区块的煤体结构测井响应研究。

     

  • 图  马必东地区镜惰比分布

    Fig. 1  Vitrinite/inertinite ratio map of Mabidong Block

    图  煤体结构测井响应直方图

    Fig. 2  Logging response of coal body structure

    图  测井曲线交会图

    Fig. 3  Crossplot of logging curves

    图  西南区镜质组含量与深侧向电阻率交会图

    Fig. 4  Crossplot of vitrinite content maceral and deep lateral resistivity

    图  随机森林判别方法

    Fig. 5  Chart of random forest method

    图  测井曲线及煤体结构预测结果

    Fig. 6  Logging curves and coal body structure prediction

    图  压裂曲线

    Fig. 7  Fracturing curves

    表  1  煤心归位前煤心参数与测井曲线Pearson相关系数

    Table  1  Pearson correlation coefficient of coal core parameters and logging curves before position restoring

    测井参数 总气含量 水分 灰分 挥发分 全硫 镜质组 惰质组 有机组分 Rmax 孔隙率
    声波时差 0.09 0.09 –0.19 0.12 0.12 –0.19 0.06 0.02 –0.25 –0.22
    井径 0.07 –0.08 –0.20 0.15 0.15 –0.14 0.10 0.06 –0.24 –0.24
    中子 0 0.01 –0.17 0.21 0.21 0.27 0.27 0.24 0 –0.19
    密度 –0.01 –0.12 –0.02 –0.14 –0.15 –0.13 0.09 0.04 0.02 –0.03
    自然伽马 –0.20 0.02 0.17 –0.12 –0.13 –0.08 –0.04 –0.05 0.07 0.08
    自然电位 0.13 0.01 0.01 –0.01 –0.01 –0.18 –0.28 –0.24 –0.13 0.06
    深侧向(对数) 0.21 –0.04 –0.01 –0.08 –0.07 –0.18 –0.22 –0.20 –0.08 0.10
    浅侧向(对数) 0.12 –0.02 –0.01 0.12 0.12 –0.12 –0.04 –0.03 –0.02 0.03
    冲洗带电阻率(对数) –0.01 0.08 0.19 –0.04 –0.05 0.09 –0.04 –0.04 –0.01 0.03
    下载: 导出CSV

    表  2  煤心归位后煤心参数与测井曲线Pearson相关系数

    Table  2  Pearson correlation coefficient of coal core parameters and logging curves after position restoring

    测井参数 总气含量 水分 灰分 挥发分 全硫 镜质组 惰质组 有机组分 Rmax 孔隙率
    声波时差 –0.03 0.15 –0.21 –0.26 0.02 –0.09 0.22 0.12 –0.20 0.09
    井径 0.05 0.16 –0.02 0.01 0.07 –0.22 0.24 0 –0.21 –0.04
    中子 –0.23 0.26 –0.14 –0.27 0.01 –0.01 0.17 0.16 –0.22 0.28
    密度 0.07 –0.35 0.14 0.15 –0.12 –0.20 –0.13 –0.36 –0.05 –0.08
    自然伽马 –0.40 –0.28 0.59 0.58 –0.06 –0.31 –0.29 –0.64 –0.09 –0.15
    自然电位 0.24 –0.08 0.02 0.07 –0.04 –0.23 0.04 –0.22 0 –0.19
    深侧向(对数) 0.28 0.25 –0.15 –0.21 0.32 0.45 –0.12 0.38 0.11 0.14
    浅侧向(对数) 0.23 0.27 –0.10 –0.16 0.37 0.48 –0.18 0.36 0.13 0.15
    冲洗带电阻率(对数) 0.28 0.25 –0.08 –0.15 0.29 0.37 –0.14 0.26 0.46 0.01
    下载: 导出CSV
  • [1] 苏现波, 陈江峰, 孙俊民, 等. 煤层气地质学与勘探开发[M]. 北京: 科学出版社, 2001.

    SU Xianbo, CHEN Jiangfeng, SUN Junmin, et al. Coalbed methane geology and exploration and development[M]. Beijing: Science Press, 2001.
    [2] 倪小明, 苏现波, 张小东. 煤层气开发地质学[M]. 北京: 化学工业出版社, 2010.

    NI Xiaoming, SU Xianbo, ZHANG Xiaodong. Coal bed methane development geology[M]. Beijing: Chemical Industry Press, 2010.
    [3] 袁崇孚. 构造煤和煤与瓦斯突出[J]. 瓦斯地质, 1986(1): 32–33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101017.htm

    YUAN Chongfu. Structural coal, coal and gas outburst[J]. Gas Geology, 1986(1): 32–33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101017.htm
    [4] 汤友谊, 孙四清, 田高岭. 测井曲线计算机识别构造软煤的研究[J]. 煤炭学报, 2005, 30(3): 293–296.. doi: 10.3321/j.issn:0253-9993.2005.03.005

    TANG Youyi, SUN Siqing, TIAN Gaoling. Study of computer identifying on tectonic soft coal with well log[J]. Journal of China Coal Society, 2005, 30(3): 293–296.. doi: 10.3321/j.issn:0253-9993.2005.03.005
    [5] 姜波, 秦勇, 琚宜文, 等. 煤层气成藏的构造应力场研究[J]. 中国矿业大学学报, 2005, 34(5): 564–569.. doi: 10.3321/j.issn:1000-1964.2005.05.005

    JIANG Bo, QIN Yong, JU Yiwen, et al. Research on tectonic stress field of generate and reservoir of coalbed methane[J]. Journal of China University of Mining & Technology, 2005, 34(5): 564–569.. doi: 10.3321/j.issn:1000-1964.2005.05.005
    [6] 琚宜文, 姜波, 侯泉林, 等. 构造煤结构–成因新分类及其地质意义[J]. 煤炭学报, 2004, 29(5): 513–517.. doi: 10.3321/j.issn:0253-9993.2004.05.001

    JU Yiwen, JIANG Bo, HOU Quanlin, et al. The new structure-genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China Coal Society, 2004, 29(5): 513–517.. doi: 10.3321/j.issn:0253-9993.2004.05.001
    [7] 马丽, 陈同俊, 王新, 等. 构造煤厚度定量预测技术新进展[J]. 煤田地质与勘探, 2018, 46(5): 66–72.. doi: 10.3969/j.issn.1001-1986.2018.05.011

    MA Li, CHEN Tongjun, WANG Xin, et al. Recent progress of quantitative prediction of tectonic coal thickness[J]. Coal Geology & Exploration, 2018, 46(5): 66–72.. doi: 10.3969/j.issn.1001-1986.2018.05.011
    [8] 孙四清, 陈志胜, 韩保山, 等. 测井曲线判识构造软煤技术预测煤与瓦斯突出[J]. 煤田地质与勘探, 2006, 34(4): 65–67.. doi: 10.3969/j.issn.1001-1986.2006.04.018

    SUN Siqing, CHEN Zhisheng, HAN Baoshan, et al. Technology of identifying deformed soft coal using well log: An approach to the regional prediction of coal and gas outburst in coal mine[J]. Coal Geology & Exploration, 2006, 34(4): 65–67.. doi: 10.3969/j.issn.1001-1986.2006.04.018
    [9] 张超, 黄华州, 徐德林, 等. 基于测井曲线的煤体结构判识[J]. 煤炭科学技术, 2017, 45(9): 47–51. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709008.htm

    ZHANG Chao, HUANG Huazhou, XU Delin, et al. Coal structure identified based on logging curve[J]. Coal Science and Technology, 2017, 45(9): 47–51. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709008.htm
    [10] 刘振明, 王延斌, 韩文龙, 等. 基于测井资料的BP神经网络的煤体结构预测[J]. 中国煤炭, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm

    LIU Zhenming, WANG Yanbin, HAN Wenlong, et al. Prediction of coal structure with BP neural network based on shaft logging data[J]. China Coal, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm
    [11] 龙王寅, 朱文伟, 徐静, 等. 利用测井曲线判识煤体结构探讨[J]. 中国煤田地质, 1999, 11(3): 64–66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199903020.htm

    LONG Wangyin, ZHU Wenwei, XU Jing, et al. Discussion on identifying coal body structure using logging curve[J]. Coal Geology of China, 1999, 11(3): 64–66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199903020.htm
    [12] 谢学恒, 樊明珠. 基于测井响应的煤体结构定量判识方法[J]. 中国煤层气, 2013, 10(5): 27–29.. doi: 10.3969/j.issn.1672-3074.2013.05.007

    XIE Xueheng, FAN Mingzhu. Quantitative identification of deformed coal based on logging response[J]. China Coalbed Methane, 2013, 10(5): 27–29.. doi: 10.3969/j.issn.1672-3074.2013.05.007
    [13] 高向东, 王延斌, 张崇崇. 钻井中煤体结构特征与井壁稳定性分析研究[J]. 煤炭科学技术, 2016, 44(5): 95–99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201605019.htm

    GAO Xiangdong, WANG Yanbin, ZHANG Chongchong. Study and analysis on coal structure features during drilling operation and well wall stability[J]. Coal Science and Technology, 2016, 44(5): 95–99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201605019.htm
    [14] 李存磊, 杨兆彪, 孙晗森, 等. 多煤层区煤体结构测井解释模型构建[J]. 煤炭学报, 2020, 45(2): 721–730. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002022.htm

    LI Cunlei, YANG Zhaobiao, SUN Hansen, et al. Construction of a logging interpretation model for coal structure from multi-coal seams area[J]. Journal of China Coal Society, 2020, 45(2): 721–730. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002022.htm
    [15] 刘振明, 王延斌, 韩文龙, 等. 基于测井资料的BP神经网络的煤体结构预测[J]. 中国煤炭, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm

    LIU Zhenming, WANG Yanbin, HAN Wenlong, et al. Prediction of coal structure with BP neural network based on shaft logging data[J]. China Coal, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm
    [16] 刘最亮, 冯梅梅. 阳泉矿区新景矿构造煤发育规律的数值模拟[J]. 煤田地质与勘探, 2018, 46(4): 35–43.. doi: 10.3969/j.issn.1001-1986.2018.04.006

    LIU Zuiliang, FENG Meimei. Numerical simulation study on the development patterns of tectonically deformed coal in Xinjing coal mine in Yangquan[J]. Coal Geology & Exploration, 2018, 46(4): 35–43.. doi: 10.3969/j.issn.1001-1986.2018.04.006
    [17] 汤友谊, 田高岭, 孙四清, 等. 对煤体结构形态及成因分类的改进和完善[J]. 焦作工学院学报(自然科学版), 2004, 23(3): 161–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB200403001.htm

    TANG Youyi, TIAN Gaoling, SUN Siqing, et al. Improvement and perfect way for the classification of the shape and cause formation of coal body texture[J]. Journal of Jiaozuo Institute of Technology(Natural Science), 2004, 23(3): 161–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB200403001.htm
    [18] 徐光波, 赵金环, 崔周旗, 等. 沁水盆地南部安泽区块煤体结构测井识别研究[J]. 煤炭科学技术, 2018, 46(5): 179–184. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201805029.htm

    XU Guangbo, ZHAO Jinhuan, CUI Zhouqi, et al. Study on well logging identification of coal structure in Anze Block of southern Qinshui Basin[J]. Coal Science and Technology, 2018, 46(5): 179–184. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201805029.htm
    [19] 韩晟, 韩坚舟, 赵璇, 等. 距离权重改进的Pearson相关系数及应用[J]. 石油地球物理勘探, 2019, 54(6): 1363–1370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201906023.htm

    HAN Sheng, HAN Jianzhou, ZHAO Xuan, et al. A pearson correlation coefficient improved by spatial weight[J]. Oil Geophysical Prospecting, 2019, 54(6): 1363–1370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201906023.htm
    [20] 杨起, 韩德馨. 中国煤田地质学[M]. 北京: 煤炭工业出版社, 1980.

    YANG Qi, HAN Dexin. China coal geology[M]. Beijing: China Coal Industry Publishing House, 1980.
    [21] 王绍清, 唐跃刚. 神东矿区煤岩学特征及煤相[J]. 中国煤田地质, 2007, 19(5): 4–7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200705001.htm

    WANG Shaoqing, TANG Yuegang. Coal petrological characteristics and coal facies in Shendong mining area[J]. Coal Geology of China, 2007, 19(5): 4–7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200705001.htm
    [22] 胡社荣, 潘响亮, 张喜臣, 等. 煤相研究方法综述[J]. 地质科技情报, 1998, 17(1): 62–66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ801.013.htm

    HU Sherong, PAN Xiangliang, ZHANG Xichen, et al. Overview of research methods of coal facies[J]. Geological Science and Technology Information, 1998, 17(1): 62–66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ801.013.htm
    [23] 汤友谊, 孙四清, 郭纯, 等. 不同煤体结构类型煤分层视电阻率值的测试[J]. 煤炭科学技术, 2005, 33(3): 70–72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ20050300J.htm

    TANG Youyi, SUN Siqing, GUO Chun, et al. Measurement of apparent resistivity value for coal slices of different seam structures[J]. Coal Science and Technology, 2005, 33(3): 70–72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ20050300J.htm
    [24] 陈健杰, 江林华, 张玉贵, 等. 不同煤体结构类型煤的导电性质研究[J]. 煤炭科学技术, 2011, 39(7): 90–92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201107023.htm

    CHEN Jianjie, JIANG Linhua, ZHANG Yugui, et al. Study on coal conductive properties of different coal structure[J]. Coal Science and Technology, 2011, 39(7): 90–92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201107023.htm
    [25] 谢楠. 沁水盆地郑庄区块煤层气井压裂排采效果与影响因素分析[D]. 北京: 中国地质大学(北京), 2017.

    XIE Nan. Analysis on fracturing effect and influencing factors of coalbed methane wells in Zhengzhuang block, Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2017.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  21
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2021-03-01
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回