留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环高压电脉冲作用下煤体微裂隙发育特征及其煤岩学控制

李恒乐 秦勇 周晓亭 张永民 陈义林

李恒乐, 秦勇, 周晓亭, 张永民, 陈义林. 循环高压电脉冲作用下煤体微裂隙发育特征及其煤岩学控制[J]. 煤田地质与勘探, 2021, 49(4): 105-113. doi: 10.3969/j.issn.1001-1986.2021.04.013
引用本文: 李恒乐, 秦勇, 周晓亭, 张永民, 陈义林. 循环高压电脉冲作用下煤体微裂隙发育特征及其煤岩学控制[J]. 煤田地质与勘探, 2021, 49(4): 105-113. doi: 10.3969/j.issn.1001-1986.2021.04.013
LI Hengle, QIN Yong, ZHOU Xiaoting, ZHANG Yongmin, CHEN Yilin. Development characteristics of coal microfracture and coal petrology control under cyclic high voltage electrical pulse[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 105-113. doi: 10.3969/j.issn.1001-1986.2021.04.013
Citation: LI Hengle, QIN Yong, ZHOU Xiaoting, ZHANG Yongmin, CHEN Yilin. Development characteristics of coal microfracture and coal petrology control under cyclic high voltage electrical pulse[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 105-113. doi: 10.3969/j.issn.1001-1986.2021.04.013

循环高压电脉冲作用下煤体微裂隙发育特征及其煤岩学控制

doi: 10.3969/j.issn.1001-1986.2021.04.013
基金项目: 

国家自然科学煤炭联合基金重点项目 U1361207

河南工程学院博士基金项目 D2016012

郑州市科技攻关项目 153PKJGG136

详细信息
    第一作者:

    李恒乐,1985年生,男,河南南阳人,博士,讲师,从事煤层气地质与瓦斯地质研究工作. E-mail:hengleli@126.com

    通信作者:

    秦勇,1955年生,男,重庆人,博士,教授,博士生导师,从事煤系矿产资源与开发地质研究工作. E-mail:yongqin@cumt.edu.cn

  • 中图分类号: P618.11

Development characteristics of coal microfracture and coal petrology control under cyclic high voltage electrical pulse

  • 摘要: 基于开放式循环高压电脉冲实验平台,针对肥煤、贫煤和无烟煤3种不同变质程度煤样,开展金属丝和含能材料2种能量加载方式下的煤样冲击致裂实验,通过光学显微镜分析循环冲击作用下煤中微裂隙发育的煤级与载荷响应特征,研究微裂隙扩展演化与显微组分之间的关系。结果发现:①增加循环冲击次数,微裂隙密度的增大趋势是非线性的,大致可划分为初期缓慢增加、中期快速增大、后期趋于稳定3个阶段,说明并非循环冲击次数越多致裂效果越好,而是存在一个最佳冲击次数。②金属丝加载方式下煤中微裂隙较含能材料加载下更为发育;整体上,肥煤的微裂隙发育程度高于贫煤,贫煤高于无烟煤,反映循环高压电脉冲在致裂效果上可能具有“双低效应”,即低变质程度煤加载低能量致裂效果可能更好。③微裂隙发育程度在显微组分之间具有差异性和侧重性,镜质组最发育,惰质组次之,壳质组最少,这是镜质组含量大(空间优势)、原位裂隙密度大(位置优势)、脆性较大(力学优势)综合作用的结果。④微裂隙在显微组分中的扩展演化轨迹可归纳为穿越显微组分、局限在显微组分内部、沿显微组分边界发育和形态呈斜列、渐进式张剪性扩展等主要特征。研究结论对进一步揭示循环高压电脉冲煤层致裂微观机制,明确工程实践目标煤层,优化作业工艺参数和提高作业效果具有重要的理论意义。

     

  • 图  实验装置工作原理

    Fig. 1  Working principle of the experimental device

    图  循环冲击作用下煤样FM1的微裂隙发育特征

    (FM1-100表示FM1号样循环冲击100次,其他样品编号含义依此类推)

    Fig. 2  Microfracture development characteristics of coal sample No.FM1 under cyclic impact

    图  微裂隙密度与冲击次数的关系

    Fig. 3  Relationship between microfracture density and impact times

    图  微裂隙密度及冲击次数与分形维数的关系

    Fig. 4  Relationship between microfracture density, impact times and fractal dimension

    图  光学显微镜下微裂隙发育特征

    注:①-⑥为穿越显微组分的微裂隙;⑦-⑪为终止于组分边界的微裂隙;⑧-⑨为折反射于组分边界的微裂隙;⑩为平行组分条带扩展的微裂隙;⑫为沿组分边界扩展的微裂隙;④-⑥、⑬-⑭为呈斜列式渐进扩展的微裂隙

    Fig. 5  Development characteristics of microfracture under polarizing microscope

    表  1  煤岩煤质测试结果及实验条件

    Table  1  Coal quality test results and experimental conditions

    煤级 编号 加载方式 冲击次数 Rmax/% 显微组分φ/% 工业分析ω/%
    镜质组V 惰质组I 壳质组E 水分Mad 灰分Ad 挥发分Vdaf
    肥煤 FM1 金属丝 200 1.20 83.87 13.76 2.37 0.86 6.42 35.21
    FM2 含能材料 10 1.12 82.38 16.02 1.60 1.03 4.71 29.70
    贫煤 PM1 金属丝 60 2.39 89.69 8.74 1.57 1.38 7.35 13.30
    PM2 含能材料 60 2.42 90.10 8.87 1.03 1.35 7.48 13.08
    无烟煤 WY1 金属丝 150 4.12 92.47 6.48 1.05 3.82 17.84 9.60
    WY2 含能材料 125 3.57 90.12 9.32 0.56 3.39 19.21 10.51
    下载: 导出CSV
  • [1] 郑建毅, 何闻. 脉冲功率技术的研究现状和发展趋势综述[J]. 机电工程, 2008, 25(4): 1–4.. doi: 10.3969/j.issn.1001-4551.2008.04.001

    ZHENG Jianyi, HE Wen. Review of research actuality and development directions of pulsed power technology[J]. Mechanical & Electrical Engineering Magazine, 2008, 25(4): 1–4.. doi: 10.3969/j.issn.1001-4551.2008.04.001
    [2] 王莹. 脉冲功率技术综述[J]. 电气技术, 2009, 10(4): 5–9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS200904006.htm

    WANG Ying. A review of pulsed power technology[J]. Electrical Engineering, 2009, 10(4): 5–9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS200904006.htm
    [3] 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1): 10–15. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201201007.htm

    JIANG Weihua. Repetition rate pulsed power technology and its applications: (1)Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10–15. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201201007.htm
    [4] 孙鹞鸿, 孙广生, 严萍, 等. 高压电脉冲采油技术发展[J]. 高电压技术, 2002, 28(1): 41–42.. doi: 10.3969/j.issn.1003-6520.2002.01.020

    SUN Yaohong, SUN Guangsheng, YAN Ping, et al. The development of the electric pulse oil-mining technology[J]. High Voltage Engineering, 2002, 28(1): 41–42.. doi: 10.3969/j.issn.1003-6520.2002.01.020
    [5] 石道涵, 王栋林, 刘书炳. 电脉冲解堵技术增产机理分析及应用[J]. 石油钻采工艺, 2002, 24(3): 73–74. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200203025.htm

    SHI Daohan, WANG Donglin, LIU Shubing. Analysis and application on the mechanism of plug removal with electric plus[J]. Oil Drilling & Production Technology, 2002, 24(3): 73–74. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200203025.htm
    [6] 陆小兵, 王守虎, 隋蕾, 等. 电脉冲解堵增注机理分析及应用[J]. 天然气与石油, 2011, 29(6): 61–62. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYS201106020.htm

    LU Xiaobing, WANG Shouhu, SUI Lei, et al. Analysis and application of electronic pulse de-plugging and injection-adding mechanism[J]. Natural Gas and Oil, 2011, 29(6): 61–62. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYS201106020.htm
    [7] 邱爱慈, 张永民, 吕晓琳, 等. 高功率脉冲技术在非常规天然气开发中应用的设想[C]//中国工程院/国家能源局第二届能源论坛论文集. 北京: 化学工业出版社, 2012: 1112–1124.

    QIU Aici, ZHANG Yongmin, LYU Xiaolin, et al. Application of high power pulse technology in unconventional gas development[C]//Proceedings of the Second Energy Forum of Chinese Academy of Engineering/National Energy Administration. Beijing: Chemical Industry Press, 2012: 1112–1124.
    [8] 白建梅, 程浩, 祖世强, 等. 大功率脉冲技术对低产煤层气井增产可行性探讨[J]. 中国煤层气, 2010, 7(6): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMC201006008.htm

    BAI Jianmei, CHENG Hao, ZU Shiqiang, et al. Discussion on feasibility of enhancing production of low-production CBM wells by using powerful pulse techniques[J]. China Coalbed Methane, 2010, 7(6): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMC201006008.htm
    [9] 秦勇, 邱爱慈, 张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术, 2014, 42(6): 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406004.htm

    QIN Yong, QIU Aici, ZHANG Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology, 2014, 42(6): 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406004.htm
    [10] 李恒乐, 秦勇, 张永民, 等. 重复脉冲强冲击波对肥煤孔隙结构影响的实验研究[J]. 煤炭学报, 2015, 40(4): 915–921. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201504032.htm

    LI Hengle, QIN Yong, ZHANG Yongmin, et al. Experimental study on the effect of strong repetitive pulse shockwave on the pore structure of fat coal[J]. Journal of China Coal Society, 2015, 40(4): 915–921. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201504032.htm
    [11] 李恒乐. 煤岩电脉冲应力波致裂增渗行为与机理[D]. 徐州: 中国矿业大学, 2015.

    LI Hengle. Behavior and mechanism of fracturing and enhanced-permeability of coals with electric pulse stress waves[D]. Xuzhou: China University of Mining and Technology, 2015.
    [12] 卢红奇. 高压电脉冲对煤体致裂作用实验研究[D]. 北京: 中国矿业大学(北京), 2015.

    LU Hongqi. Experimental research on fracturing coal with high-voltage electrical pulse[D]. Beijing: China University of Mining and Technology(Beijing), 2015.
    [13] 周晓亭. 重复电脉冲波煤岩致裂增渗效果岩石学分析[D]. 徐州: 中国矿业大学, 2016.

    ZHOU Xiaoting. Coal petrology analysis of effect for enhancing coal reservoir permeability with repetitive electric pulses wave[D]. Xuzhou: China University of Mining and Technology, 2016.
    [14] 张永民, 邱爱慈, 周海滨, 等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4): 1009–1017. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201604001.htm

    ZHANG Yongmin, QIU Aici, ZHOU Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009–1017. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201604001.htm
    [15] 张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9): 79–85. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709013.htm

    ZHANG Yongmin, QIU Aici, QIN Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79–85. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709013.htm
    [16] 闫发志. 基于电破碎效应的脉冲致裂煤体增渗实验研究[D]. 徐州: 中国矿业大学, 2017.

    YAN Fazhi. Experimental study on pulses induced fracturing and permeability enhancing of coal blocks based on the electrical fragmentation effect[D]. Xuzhou: China University of Mining and Technology, 2017.
    [17] 卞德存. 静水压下脉冲放电冲击波特性及其岩体致裂研究[D]. 太原: 太原理工大学, 2018.

    BIAN Decun. Research on the shock wave characteristics of pulsed discharge under hydrostatic pressure and its fracturing effect on rock mass[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [18] 郭智栋, 曾雯婷, 方惠军, 等. 重复脉冲强冲击波技术在煤储层改造中的初步应用[J]. 中国石油勘探, 2019, 24(3): 397–402. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201903013.htm

    GUO Zhidong, ZENG Wenting, FANG Huijun, et al. Initial application of intense repeated pulse wave for stimulating CBM reservoirs[J]. China Petroleum Exploration, 2019, 24(3): 397–402. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201903013.htm
    [19] 张永民, 蒙祖智, 秦勇, 等. 松软煤层可控冲击波增透瓦斯抽采创新实践: 以贵州水城矿区中井煤矿为例[J]. 煤炭学报, 2019, 44(8): 2388–2400. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908014.htm

    ZHANG Yongmin, MENG Zuzhi, QIN Yong, et al. Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction: A case of Zhongjing Mine, Shuicheng, Guizhou Province, China[J]. Journal of China Coal Society, 2019, 44(8): 2388–2400. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908014.htm
    [20] 张永民, 安世岗, 陈殿赋, 等. 可控冲击波增透保德煤矿8#煤层的先导性试验[J]. 煤矿安全, 2019, 50(10): 14–17. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201910004.htm

    ZHANG Yongmin, AN Shigang, CHEN Dianfu, et al. Preliminary tests of coal reservoir permeability enhancement by controllable shock waves in Baode coal mine 8# coal seam[J]. Safety in Coal Mines, 2019, 50(10): 14–17. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201910004.htm
    [21] 安世岗, 陈殿赋, 张永民, 等. 可控电脉冲波增透技术在低透气性煤层中的应用[J]. 煤田地质与勘探, 2020, 48(4): 138–145. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7624574a-f8c0-4d8b-a0d6-866597ae08aa

    AN Shigang, CHEN Dianfu, ZHANG Yongmin, et al. Application of controllable electric pulse wave permeability-enhancing technology in the low-permeability coal seams[J]. Coal Geology & Exploration, 2020, 48(4): 138–145. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7624574a-f8c0-4d8b-a0d6-866597ae08aa
    [22] 秦勇, 李恒乐, 张永民, 等. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析[J]. 煤田地质与勘探, 2021, 49(1): 108–118. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fa6d0643-879e-4043-bb70-3306e2b86961

    QIN Yong, LI Hengle, ZHANG Yongmin, et al. Numerical analysis on CSW fracturing behavior of coal seam under constraint of geological and engineering conditions[J]. Coal Geology & Exploration, 2021, 49(1): 108–118. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fa6d0643-879e-4043-bb70-3306e2b86961
    [23] 许浩, 汤达祯. 基于煤层气产出的煤岩学控制机理研究进展[J]. 煤炭科学技术, 2016, 44(6): 140–145. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201606023.htm

    XU Hao, TANG Dazhen. Research progress of control mechanism of coal petrology on CBM production[J]. Coal Science and Technology, 2016, 44(6): 140–145. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201606023.htm
    [24] 樊祺章, 蔡益栋, 贝金翰, 等. 煤岩演化程度对煤储层孔裂隙结构的控制作用[J]. 现代地质, 2020, 34(2): 273–280. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202002006.htm

    FAN Qizhang, CAI Yidong, BEI Jinhan, et al. Pore and fracture structure of coal reservoir constrained by coal metamorphism[J]. Geoscience, 2020, 34(2): 273–280. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202002006.htm
    [25] 姚艳斌, 刘大锰, 汤达祯, 等. 沁水盆地煤储层微裂隙发育的煤岩学控制机理[J]. 中国矿业大学学报, 2010, 39(1): 6–13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201001002.htm

    YAO Yanbin, LIU Dameng, TANG Dazhen, et al. Influence and control of coal petrological composition on the development of microfracture of coal reservoir in the Qinshui Basin[J]. Journal of China University of Mining & Technology, 2010, 39(1): 6–13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201001002.htm
    [26] 郭莉, 段林娣, 张春雷, 等. 煤层显微煤岩类型与裂隙分布的关系[J]. 煤田地质与勘探, 2005, 33(5): 9–11. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=dc01015f-0da1-49f1-b0c0-4dfcb0bf3a3b

    GUO Li, DUAN Lindi, ZHANG Chunlei, et al. Relationship between microlithotype and cleat distribution in coal bed[J]. Coal Geology & Exploration, 2005, 33(5): 9–11. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=dc01015f-0da1-49f1-b0c0-4dfcb0bf3a3b
    [27] 范章群, 宋孝忠. 新疆中生代煤中半镜质组特征及其研究意义[J]. 煤田地质与勘探, 2014, 42(5): 9–12. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e5cd8549-96f3-4e1b-a66b-4e6a6f295448

    FAN Zhangqun, SONG Xiaozhong. Characteristics of semi-vitrinite of the Mesozoic coal in Xinjiang area and their research significance[J]. Coal Geology & Exploration, 2014, 42(5): 9–12. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e5cd8549-96f3-4e1b-a66b-4e6a6f295448
    [28] HAN Ruoyu, ZHOU Haibin, LIU Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: Ⅰ. fundamental mechanisms and processes[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 3999–4008. http://ieeexplore.ieee.org/document/7239609
    [29] ZHOU Haibin, HAN Ruoyu, LIU Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: Ⅱ. influence of wire configuration and stored energy[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4009–4016. http://ieeexplore.ieee.org/document/7239609
    [30] ZHOU Haibin, ZHANG Yongmin, LI Hengle, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: Ⅲ. shock wave characteristics with three discharge loads[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4017–4023. http://ieeexplore.ieee.org/document/7239609
    [31] LIU Qiaojue, DING Weidong, HAN Ruoyu, et al. Fracturing effect of electrohydraulic shock waves generated by plasma-ignited energetic materials explosion[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 423–431. http://ieeexplore.ieee.org/document/7859478/
    [32] 傅雪海, 秦勇, 薛秀谦, 等. 煤储层孔、裂隙系统分形研究[J]. 中国矿业大学学报, 2001, 30(3): 225–228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103002.htm

    FU Xuehai, QIN Yong, XUE Xiuqian, et al. Research on fractals of pore and fracture structure of coal reservoirs[J]. Journal of China University of Mining & Technology, 2001, 30(3): 225–228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103002.htm
    [33] 王登科, 刘淑敏, 魏建平, 等. 冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报, 2017, 34(3): 594–600. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201703027.htm

    WANG Dengke, LIU Shumin, WEI Jianping, et al. The failure characteristics of coal under impact load in laboratory[J]. Journal of Mining and Safety Engineering, 2017, 34(3): 594–600. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201703027.htm
    [34] VOGELS M, ZOECKLER R, STASIW D M, et al. P. F. Verhulst's"notice sur la loi que la populations suit dans son accroissement"from correspondence mathematique et physique. Ghent, vol. X, 1838[J]. Journal of Biological Physics, 1975, 3(4): 183–192.. doi: 10.1007/BF02309004
    [35] PEARL R, REED L J. On the rate of growth of the population of the United States since 1790 and its mathematical representation[J]. Proceedings of the National Academy of Sciences, 1920, 6(6): 275–288. doi: 10.1007/978-3-642-81046-6_38
    [36] 崔党群. Logistic曲线方程的解析与拟合优度测验[J]. 数理统计与管理, 2005, 24(1): 112–115. https://www.cnki.com.cn/Article/CJFDTOTAL-SLTJ200501020.htm

    CUI Dangqun. Analysis and making good fitting degree test for logistic curve regression equation[J]. Journal of Applied Statistics and Management, 2005, 24(1): 112–115. https://www.cnki.com.cn/Article/CJFDTOTAL-SLTJ200501020.htm
    [37] 宋之杰, 唐晓莉. 基于Logistic模型的我国信息产业演化发展研究[J]. 数学的实践与认识, 2019, 49(5): 151–159. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201905016.htm

    SONG Zhijie, TANG Xiaoli. Research on the development of information industry in China based on the logistic model[J]. Mathematics in Practice and Theory, 2019, 49(5): 151–159. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201905016.htm
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  12
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 修回日期:  2021-04-15
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回