留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过采空区抽采下组煤煤层气技术及工程应用初探——以晋城寺河井田为例

李军军 李国富 郝海金 郝春生 王争

李军军, 李国富, 郝海金, 郝春生, 王争. 过采空区抽采下组煤煤层气技术及工程应用初探——以晋城寺河井田为例[J]. 煤田地质与勘探, 2021, 49(4): 96-104. doi: 10.3969/j.issn.1001-1986.2021.04.012
引用本文: 李军军, 李国富, 郝海金, 郝春生, 王争. 过采空区抽采下组煤煤层气技术及工程应用初探——以晋城寺河井田为例[J]. 煤田地质与勘探, 2021, 49(4): 96-104. doi: 10.3969/j.issn.1001-1986.2021.04.012
LI Junjun, LI Guofu, HAO Haijin, HAO Chunsheng, WANG Zheng. Technology of across-goaf drainage of coalbed methane from a lower coal seam group and its primary application: Taking Sihe mine field as an example[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 96-104. doi: 10.3969/j.issn.1001-1986.2021.04.012
Citation: LI Junjun, LI Guofu, HAO Haijin, HAO Chunsheng, WANG Zheng. Technology of across-goaf drainage of coalbed methane from a lower coal seam group and its primary application: Taking Sihe mine field as an example[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 96-104. doi: 10.3969/j.issn.1001-1986.2021.04.012

过采空区抽采下组煤煤层气技术及工程应用初探——以晋城寺河井田为例

doi: 10.3969/j.issn.1001-1986.2021.04.012
基金项目: 

国家科技重大专项任务 2016ZX05067-001-008

山西省科技重大专项项目 20181101013

详细信息
    第一作者:

    李军军,1984年生,男,河北唐山人,硕士,高级工程师,从事煤与煤层气共采理论与方法方面的研究工作. E-mail:qaljj@163.com

  • 中图分类号: P618.11

Technology of across-goaf drainage of coalbed methane from a lower coal seam group and its primary application: Taking Sihe mine field as an example

  • 摘要: 晋城矿区寺河井田3号煤层经多年的煤矿开采,形成了大面积的采空区,大面积的卸压提高了下组煤(9号、15号)的渗透率,但由于采空区阻隔和煤层气地面预抽技术的局限,致使下组煤煤层气尚未得到有效抽采。为保证煤矿的安全生产和产能的释放,结合采空区特征,采用过采空区钻完井及压裂工艺新技术,分析施工参数及后期产能情况,评价过采空区抽采下组煤煤层气技术的应用效果。结果表明:地面钻井开发过采空区下组煤煤层气资源时,应首先进行井位优选及井身结构优化,以保证钻井的成功率;采用氮气置换套管钻井工艺及低压易漏注浆加固等穿采空区钻完井技术,不仅可以有效降低采空区煤层气自燃甚至爆炸风险,而且保证了穿采空区段固井质量;优化采空区下组煤层压裂施工参数并设计不同井位的煤层气井压裂工艺,有效扩展裂缝长度,同时也避免了“压穿”等压裂事故发生;精细化排采管控措施可以有效扩大泄流半径,提高单井产能。现场一百余口过采空区煤层气井排采实践表明,单井最高产气量达到8 832 m3/d,日均产气量达到2 694 m3,验证了过采空区抽采下组煤煤层气技术可行,可推广应用。

     

  • 图  3号煤采空区范围

    Fig. 1  Range of the goaf of No.3 coal seam

    图  采空区覆岩变形特征

    Fig. 2  Deformation characteristics of overburden of the goaf

    图  采空区及围岩垂直应力分布曲线[17]

    Fig. 3  Vertical stress distribution curve of goaf and surrounding rock

    图  煤岩应力分区

    Fig. 4  Stress zoning of coal and rock

    图  井身结构

    Fig. 5  Structure of the wellbore

    图  氮气钻井工艺流程

    Fig. 6  Nitrogen drilling process flow chart

    图  低压易漏注浆加固位置

    Fig. 7  Low pressure leakage grouting reinforcement position

    图  采动影响下地应力及渗透率分布情况

    Fig. 8  Distribution of in-situ stress and permeability under the influence of mining

    图  压裂层位优选

    Fig. 9  Fracturing horizon optimization

    图  10  套压和液面位置与产气量关系

    Fig. 10  Relation among casing pressure, liquid level position and gas production rate

    图  11  过采空区煤层气井产能

    Fig. 11  Productivity of across-goaf wells

    图  12  典型煤层气井排采曲线

    Fig. 12  Drainage curve of typical CBM wells

    表  1  过采空区井与常规井压裂参数比较

    Table  1  Comparison of fracturing parameters between wells in goaf and conventional wells

    类别 目的层位 布孔
    密度/(个·m–1)
    压裂液量/m3 0.15~0.30 mm石英砂体积/m3 0.45~0.90 mm石英砂体积/m3 平均砂比/%
    常规井 9号+15号煤 24 559 10 20 6.7
    过采空区井 9号+9号煤底板1 m 9号:16 455 5 10 5.0
    底板:24
    15号煤 24 559 10 20 6.7
    下载: 导出CSV

    表  2  过采空区井裂缝监测分析结果

    Table  2  Analysis results of crack monitoring of cross-goaf wells

    压裂层 裂缝参数
    主走向NE/(°) 最大裂缝长度/m 裂缝面积/105 m2 特征
    9号煤 80 370 1.2 两翼为主裂缝,由多条子缝构成的缝网
    15号煤 130 450 1.4
    下载: 导出CSV

    表  3  过采空区井煤层注入/压降试井分析结果

    Table  3  Well test analysis results of injection/pressure drop of across-goaf wells

    参数 数值
    9号煤 15号煤
    储层压力pi/MPa 0.64 1.03
    储层压力梯度/(MPa·m–1) 2.69×10–3 3.85×10–3
    渗透率k/10–3 μm2 10.81 1.22
    表皮系数S 10.22 0.65
    调查半径Ri/m 40.09 13.72
    储层温度t/℃ 15.97 16.40
    下载: 导出CSV
  • [1] 张群, 葛春贵, 李伟, 等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报, 2018, 43(1): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801019.htm

    ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801019.htm
    [2] 贺天才, 王保玉, 田永东. 晋城矿区煤与煤层气共采研究进展及急需研究的基本问题[J]. 煤炭学报, 2014, 39(9): 1779-1785. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409001.htm

    HE Tiancai, WANG Baoyu, TIAN Yongdong. Development and issues with coal and coal-bed methane simultaneous exploitation in Jincheng mining area[J]. Journal of China Coal Society, 2014, 39(9): 1779-1785. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409001.htm
    [3] MENG Zhaoping, ZHANG Jincai, WANG Rui. In-situ stress, pore pressure and stress-dependent permeability in the southern Qinshui Basin[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48: 122-131. http://www.sciencedirect.com/science/article/pii/S1365160910001899
    [4] 袁亮, 薛俊华, 张农, 等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望[J]. 煤炭科学技术, 2013, 41(9): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201309002.htm

    YUAN Liang, XUE Junhua, ZHANG Nong, et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining[J]. Coal Science and Technology, 2013, 41(9): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201309002.htm
    [5] 刘见中, 沈春明, 雷毅, 等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报, 2017, 42(5): 1221-1229. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201705018.htm

    LIU Jianzhong, SHEN Chunming, LEI Yi, et al. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society, 2017, 42(5): 1221-1229. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201705018.htm
    [6] 任波, 袁亮, 桑树勋, 等. 厚表土层深井卸压开采地面钻井变形破坏及其预防: 以淮南顾桥矿为例[J]. 煤田地质与勘探, 2018, 46(5): 159-166.. doi: 10.3969/j.issn.1001-1986.2018.05.025

    REN Bo, YUAN Liang, SANG Shuxun, et al. Deformation and damage of pressure-relieved gas extraction wells in deep mining under thick surface soil and their prevention: With Guqiao of Huainan Mine as an example[J]. Coal Geology & Exploration, 2018, 46(5): 159-166.. doi: 10.3969/j.issn.1001-1986.2018.05.025
    [7] 黄华州, 桑树勋, 方良才, 等. 采动区远程卸压煤层气抽采地面井产能影响因素[J]. 煤田地质与勘探, 2010, 38(2): 18-22.. doi: 10.3969/j.issn.1001-1986.2010.02.005

    HUANG Huazhou, SANG Shuxun, FANG Liangcai, et al. Analysis of productivity impact factors for coalbed methane drainage by remote pressure relief of surface well in mining area[J]. Coal Geology & Exploration, 2010, 38(2): 18-22.. doi: 10.3969/j.issn.1001-1986.2010.02.005
    [8] ZHANG J, STANDIFIRD W B, ROEGIERS J C, et al. Stress-dependent fluid flow and permeability in fractured media: From lab experiments to engineering applications[J]. Rock Mechanics and Rock Engineering, 2007, 40(1): 3-21.. doi: 10.1007/s00603-006-0103-x
    [9] 彭苏萍, 孟召平. 不同围压下砂岩孔渗规律试验研究[J]. 岩石力学与工程学报, 2003, 22(5): 742-746.. doi: 10.3321/j.issn:1000-6915.2003.05.010

    PENG Suping, MENG Zhaoping. Testing study on pore ratio and permeability of sandstone under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 742-746.. doi: 10.3321/j.issn:1000-6915.2003.05.010
    [10] 武玺, 李国富, 王争, 等. 晋城岳城矿地面采动区井井位优选与抽采寿命研究[J]. 煤田地质与勘探, 2021, 49(1): 130-136.. doi: 10.3969/j.issn.1001-1986.2021.01.013

    WU Xi, LI Guofu, WANG Zheng, et al. Study on the optimization of well location and extraction life in mining disturbed zone of Yuecheng mine in Jincheng[J]. Coal Geology & Exploration, 2021, 49(1): 130-136.. doi: 10.3969/j.issn.1001-1986.2021.01.013
    [11] 刘见中, 孙海涛, 雷毅, 等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报, 2020, 45(1): 258-267. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001026.htm

    LIU Jianzhong, SUN Haitao, LEI Yi, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society, 2020, 45(1): 258-267. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001026.htm
    [12] 石智军, 赵江鹏, 陆鸿涛, 等. 煤矿区大直径垂直定向孔快速钻进关键技术与装备[J]. 煤炭科学技术, 2016, 44(9): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201609003.htm

    SHI Zhijun, ZHAO Jiangpeng, LU Hongtao, et al. Key technology and equipment of rapid drilling for large diameter vertical directional borehole in mine area[J]. Coal Science and Technology, 2016, 44(9): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201609003.htm
    [13] 方俊, 刘飞, 李泉新, 等. 煤矿井下碎软煤层空气复合定向钻进技术与装备[J]. 煤炭科学技术, 2019, 47(2): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201902036.htm

    FANG Jun, LIU Fei, LI Quanxin, et al. Air compound directional drilling technology and equipment for soft-fragmentized seam underground coal mine[J]. Coal Science and Technology, 2019, 47(2): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201902036.htm
    [14] 袁亮, 郭华, 沈宝堂, 等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报, 2011, 36(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201103002.htm

    YUAN Liang, GUO Hua, SHEN Baotang, et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability[J]. Journal of China Coal Society, 2011, 36(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201103002.htm
    [15] 孟召平, 田永东, 李国富. 沁水盆地南部地应力场特征及其研究意义[J]. 煤炭学报, 2010, 35(6): 975-981. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006027.htm

    MENG Zhaoping, TIAN Yongdong, LI Guofu. Characteristics of in-situ stress field in southern Qinshui Basin and its research significance[J]. Journal of China Coal Society, 2010, 35(6): 975-981. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006027.htm
    [16] 袁亮. 复杂地质条件矿区瓦斯综合治理技术体系研究[J]. 煤炭科学技术, 2006, 34(1): 1-3.. doi: 10.3969/j.issn.0253-2336.2006.01.001

    YUAN Liang. Research on comprehensive mine gas prevention and control technology system in mine with complicated geological conditions[J]. Coal Science and Technology, 2006, 34(1): 1-3.. doi: 10.3969/j.issn.0253-2336.2006.01.001
    [17] 孟召平, 师修昌, 刘珊珊, 等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报, 2016, 41(3): 537-544. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603003.htm

    MENG Zhaoping, SHI Xiuchang, LIU Shanshan, et al. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of China Coal Society, 2016, 41(3): 537-544. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603003.htm
    [18] 姚晓, 胡中磊, 王华东, 等. 复杂条件浅煤层气井固井水泥浆体系研究及应用[J]. 天然气工业, 2003, 23(2): 66-68.. doi: 10.3321/j.issn:1000-0976.2003.02.021

    YAO Xiao, HU Zhonglei, WANG Huadong, et al. Mud system study and application for shallow coal-bed gas wells cementing under complicated conditions[J]. Natural Gas Industry, 2003, 23(2): 66-68.. doi: 10.3321/j.issn:1000-0976.2003.02.021
    [19] 齐奉中, 刘爱平. 保护煤储层固井技术的探讨[J]. 钻井液与完井液, 2001, 18(1): 21-24.. doi: 10.3969/j.issn.1001-5620.2001.01.005

    QI Fengzhong, LIU Aiping. An investigation on the cementing technology for coalbed reservoir protection[J]. Drilling Fluid & Completion Fluid, 2001, 18(1): 21-24.. doi: 10.3969/j.issn.1001-5620.2001.01.005
    [20] 赵岳, 沙林浩, 李立荣, 等. 我国煤层气固井技术难点及对策[J]. 天然气技术与经济, 2011, 5(6): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201106013.htm

    ZHAO Yue, SHA Linhao, LI Lirong, et al. Technological difficulties of CBM cementing in China and countermeasures[J]. Natural Gas Technology and Economy, 2011, 5(6): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201106013.htm
    [21] 贾慧敏, 胡秋嘉, 樊彬, 等. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术[J]. 煤田地质与勘探, 2021, 49(2): 34-42.. doi: 10.3969/j.issn.1001-1986.2021.02.005

    JIA Huimin, HU Qiujia, FAN Bin, et al. Causes for low CBM production of vertical wells and efficient development technology in northern Zhengzhuang Block in Qinshui Basin[J]. Coal Geology & Exploration, 2021, 49(2): 34-42.. doi: 10.3969/j.issn.1001-1986.2021.02.005
    [22] 郭广山, 邢力仁, 李娜, 等. 煤层气井组生产特征及产能差异控制因素[J]. 天然气地球科学, 2020, 31(9): 1334-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009016.htm

    GUO Guangshan, XING Liren, LI Na, et al. Study on production characteristics and controlling factors of capacity differences of coalbed methane well group[J]. Natural Gas Geoscience, 2020, 31(9): 1334-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009016.htm
    [23] 张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014, 39(9): 1927-1931. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409024.htm

    ZHANG Sui'an, CAO Lihu, DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society, 2014, 39(9): 1927-1931. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409024.htm
    [24] 陈振宏, 王一兵, 杨焦生, 等. 影响煤层气井产量的关键因素分析: 以沁水盆地南部樊庄区块为例[J]. 石油学报, 2009, 30(3): 409-412.. doi: 10.3321/j.issn:0253-2697.2009.03.016

    CHEN Zhenhong, WANG Yibing, YANG Jiaosheng, et al. Influencing factors on coal-bed methane production of single well: A case of Fanzhuang Block in the south part of Qinshui Basin[J]. Acta Petrolei Sinica, 2009, 30(3): 409-412.. doi: 10.3321/j.issn:0253-2697.2009.03.016
    [25] 刘人和, 刘飞, 周文, 等. 沁水盆地煤岩储层单井产能影响因素[J]. 天然气工业, 2008, 28(7): 30-33.. doi: 10.3787/j.issn.1000-0976.2008.07.009

    LIU Renhe, LIU Fei, ZHOU Wen, et al. An analysis of factors affecting single well deliverability of coalbed methane in the Qinshui Basin[J]. Natural Gas Industry, 2008, 28(7): 30-33.. doi: 10.3787/j.issn.1000-0976.2008.07.009
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  13
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2020-06-11
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回