留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采动覆岩离层多层位注浆地表沉陷控制技术

马荷雯

马荷雯. 采动覆岩离层多层位注浆地表沉陷控制技术[J]. 煤田地质与勘探, 2021, 49(3): 150-157. doi: 10.3969/j.issn.1001-1986.2021.03.019
引用本文: 马荷雯. 采动覆岩离层多层位注浆地表沉陷控制技术[J]. 煤田地质与勘探, 2021, 49(3): 150-157. doi: 10.3969/j.issn.1001-1986.2021.03.019
MA Hewen. Surface subsidence control technology of multi-bed separation grouting[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 150-157. doi: 10.3969/j.issn.1001-1986.2021.03.019
Citation: MA Hewen. Surface subsidence control technology of multi-bed separation grouting[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 150-157. doi: 10.3969/j.issn.1001-1986.2021.03.019

采动覆岩离层多层位注浆地表沉陷控制技术

doi: 10.3969/j.issn.1001-1986.2021.03.019
基金项目: 

国家重点研发计划课题 2017YFC0804101

详细信息
    第一作者:

    马荷雯, 1990年生, 女, 陕西绥德人, 博士, 研究方向为水文地质工程地质.E-mail: mahewen@cumt.edu.cn

  • 中图分类号: TU478

Surface subsidence control technology of multi-bed separation grouting

  • 摘要: 为了解决上覆岩层中无明显厚硬岩层、采动过程中难以产生较大尺寸离层空间、离层注浆充填率低的问题,提出采动覆岩离层多层位注浆技术。通过相似材料模拟实验对多层位离层注浆覆岩时空演化规律进行研究,并在淮北矿区某工作面进行现场试验。结果表明:在无较大采动覆岩离层情况下,采用增加钻孔数目的多层位离层注浆方法,在采动覆岩内部形成不同扩散半径的注浆充填体,共同叠加支撑上覆岩层,可以有效减小覆岩破坏程度。实施多层位离层注浆方法,可以有效提高注浆总量和注采比,地表减沉率可达79.92%。提出的离层注浆量计算公式可以精确预计浆液灌注量,准确率超过91%,可为覆岩离层注浆工程提供指导,并为注浆减沉率预计提供参考。这为解决煤炭资源开采引起的地表沉陷问题提供了一种有效和经济的方法,同时扩大覆岩注浆技术的应用范围。

     

  • 图  多层位离层注浆实验模拟装置

    Fig. 1  Device of scale model test for multi-bed separation grouting

    图  多层位离层注浆相似材料实验模型

    Fig. 2  The scale model to simulate multi-bed separation grouting

    图  单离层注浆覆岩裂隙动态演化

    Fig. 3  Spatio-temporal evolution diagram of single-bed separation grouting

    图  多离层注浆覆岩裂隙动态演化

    Fig. 4  Spatio-temporal evolution diagram of multi-bed separation grouting

    图  单离层注浆与多离层注浆效果对比

    Fig. 5  Comparison surface subsidence of single-bed separation grouting and multi-bed separation grouting

    图  多离层注浆充填等效开采模型

    Fig. 6  Equivalent extraction model for multi-bed separation grouting

    图  淮北矿区祁南煤矿36采区钻孔位置

    Fig. 7  Layout of injection boreholes in mining district 36 of Qinan Coal Mine in Huaibei Mining Area

    图  多层位离层注浆

    Fig. 8  Schematic of grout injection into multi-bed-separation

    图  各月份注灰量统计

    Fig. 9  Quantity of fly ash injected per month

    图  10  离层注浆地表观测实测值与拟合曲线对比

    Fig. 10  Comparison of measured values and fitted curves of multi-bed separation grouting

    表  1  实验采用岩石的物理力学指标

    Table  1  Physic-mechanical properties of overburden

    岩性 密度ρ/(kg∙m–3) 抗压强度/MPa 弹性模量/MPa 内摩擦角φ/(°) 抗拉强度/MPa 黏聚力/MPa 泊松比
    砂质泥岩 1 700 1 820 18 4.7 4.8 0.20
    细砂岩 2 700 37.8~84.6 2 900 31 4.8 3.2 0.23
    粉砂岩 2 500 40.6~72.5 2 600~3 600 35 4.8 4.4 0.24
    泥岩 2 700 11.6~36.0 3 000~4 500 25 3.7 4.8 0.25
    中砂岩 2 600 67.0~88.1 6 000 33 2.0 1.1 0.24
    32 1 400 1 990 22 1.7 0.4 0.26
    砂岩 2 600 105.4~219.4 50 000 33 3.0 3.1 0.14
    下载: 导出CSV

    表  2  注浆钻孔设计参数

    Table  2  Designed parameters of grouting boreholes

    钻孔 距煤层顶板距离/m 距切眼距离/m 距机巷距离/m
    注1 60 60 75
    注2 90 110 50
    注3 60 210 75
    注4 90 250 50
    注5 90 360 75
    注6 90 400 100
    下载: 导出CSV

    表  3  不同开采方式地表移动变形参数

    Table  3  Surface deformation parameters with different mining methods

    开采方式 注浆位置 下沉量/mm 倾斜/(mm∙m–1) 曲率/(mm∙m–2) 水平移动/mm 水平变形 损坏程度等级
    综放开采 –2 082 10.0 –0.14 1 000 –11~5
    注浆开采 地表 –418 2.0 –0.01 100 –2~2
    村庄 –92 0.7 –0.01 79 0.6
    下载: 导出CSV
  • [1] 刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001015.htm

    LIU Jiangong, LI Xinwang, HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society, 2020, 45(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001015.htm
    [2] 郭广礼, 王悦汉, 马占国. 煤矿开采沉陷有效控制的新途径[J]. 中国矿业大学学报, 2004, 33(2): 150-153.. doi: 10.3321/j.issn:1000-1964.2004.02.006

    GUO Guangli, WANG Yuehan, MA Zhanguo. A new method for ground subsidence control in coal mining[J]. Journal of China University of Mining & Technology, 2004, 33(2): 150-153.. doi: 10.3321/j.issn:1000-1964.2004.02.006
    [3] 胡炳南. 我国煤矿充填开采技术及其发展趋势[J]. 煤炭科学技术, 2012, 40(11): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201211002.htm

    HU Bingnan. Backfill mining technology and development tendency in China coal mine[J]. Coal Science and Technology, 2012, 40(11): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201211002.htm
    [4] 康红普, 徐刚, 王彪谋, 等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报, 2019, 1(1): 013501. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902002.htm

    KANG Hongpu, XU Gang, WANG Biaomou, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering, 2019, 1(1): 013501. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902002.htm
    [5] 孙希奎. 矿山绿色充填开采发展现状及展望[J]. 煤炭科学技术, 2020, 48(9): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009005.htm

    SUN Xikui. Present situation and prospect of green backfill mining in mines[J]. Coal Science and Technology, 2020, 48(9): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009005.htm
    [6] 王金庄, 康建荣, 吴立新. 煤矿覆岩离层注浆减缓地表沉降机理与应用探讨[J]. 中国矿业大学学报, 1999, 28(4): 331-334.. doi: 10.3321/j.issn:1000-1964.1999.04.008

    WANG Jinzhuang, KANG Jianrong, WU Lixin. Discussion on mechanism and application of grouting in separated-bed to reduce surface subsidence induced by coal mining[J]. Journal of China University of Mining & Technology, 1999, 28(4): 331-334.. doi: 10.3321/j.issn:1000-1964.1999.04.008
    [7] 郭文兵, 马志宝, 白二虎. 我国煤矿"三下一上"采煤技术现状与展望[J]. 煤炭科学技术, 2020, 48(9): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009002.htm

    GUO Wenbing, MA Zhibao, BAI Erhu. Current status and prospect of coal mining technology under buildings, water bodies and railways, and above confined water in China[J]. Coal Science and Technology, 2020, 48(9): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009002.htm
    [8] 许家林, 钱鸣高. 岩层采动裂隙分布在绿色开采中的应用[J]. 中国矿业大学学报, 2004, 33(2): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200402004.htm

    XU Jialin, QIAN Minggao. Study and application of mining-induced fracture distribution in green mining[J]. Journal of China University of Mining & Technology, 2004, 33(2): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200402004.htm
    [9] 何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1994.

    HE Guoqing, YANG Lun, LING Gengdi, et al. Mining subsidence science[M]. Xuzhou: China University of Mining and Technology Press, 1994.
    [10] 杨伦. 对采动覆岩离层注浆减沉技术的再认识[J]. 煤炭学报, 2002, 27(4): 352-356.. doi: 10.3321/j.issn:0253-9993.2002.04.004

    YANG Lun. Re-understand the technology of reducing the subsidence due to mining by injecting grouts into separated beds in overlying disrupted strata by extraction[J]. Journal of China Coal Society, 2002, 27(4): 352-356.. doi: 10.3321/j.issn:0253-9993.2002.04.004
    [11] 许家林, 轩大洋, 朱卫兵, 等. 部分充填采煤技术的研究与实践[J]. 煤炭学报, 2015, 40(6): 1303-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506012.htm

    XU Jialin, XUAN Dayang, ZHU Weibing, et al. Study and application of coal mining with partial backfilling[J]. Journal of China Coal Society, 2015, 40(6): 1303-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506012.htm
    [12] 朱卫兵, 许家林, 赖文奇, 等. 覆岩离层分区隔离注浆充填减沉技术的理论研究[J]. 煤炭学报, 2007, 32(5): 458-462.. doi: 10.3321/j.issn:0253-9993.2007.05.003

    ZHU Weibing, XU Jialin, LAI Wenqi, et al. Research of isolated section-grouting technology for overburden bed separation space to reduce subsidence[J]. Journal of China Coal Society, 2007, 32(5): 458-462.. doi: 10.3321/j.issn:0253-9993.2007.05.003
    [13] 许家林, 钱鸣高. 覆岩注浆减沉钻孔布置的试验研究[J]. 中国矿业大学学报, 1998, 27(3): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD803.014.htm

    XU Jialin, QIAN Minggao. Study on layout of grouting boreholes for retarding stratum subsidence[J]. Journal of China University of Mining & Technology, 1998, 27(3): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD803.014.htm
    [14] 许家林, 倪建明, 轩大洋, 等. 覆岩隔离注浆充填不迁村采煤技术[J]. 煤炭科学技术, 2015, 43(12): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201512002.htm

    XU Jialin, NI Jianming, XUAN Dayang, et al. Coal mining technology without village relocation by isolated grout injection into overburden[J]. Coal Science and Technology, 2015, 43(12): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201512002.htm
    [15] 许家林, 轩大洋, 朱卫兵, 等. 基于关键层控制的部分充填采煤技术[J]. 采矿与岩层控制工程学报, 2019, 1(1): 013504. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902006.htm

    XU Jialin, XUAN Dayang, ZHU Weibing, et al. Partial backfilling coal mining technology based on key strata control[J]. Journal of Mining and Strata Control Engineering, 2019, 1(1): 013504. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902006.htm
    [16] 连建发, 慎乃齐, 张杰坤. 分形理论在岩体质量评价中的应用研究[J]. 岩石力学与工程学报, 2001, 20(增刊1): 1695-1698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2001S1019.htm

    LIAN Jianfa, SHEN Naiqi, ZHANG Jiekun. Application research on fractal theory in rockmass quality evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(Sup. 1): 1695-1698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2001S1019.htm
    [17] 李宏艳, 王维华, 齐庆新, 等. 基于分形理论的采动裂隙时空演化规律研究[J]. 煤炭学报, 2014, 39(6): 1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406007.htm

    LI Hongyan, WANG Weihua, QI Qingxin, et al. Study on fissure development rule of overlying strata influenced by mining based on fractal theory[J]. Journal of China Coal Society, 2014, 39(6): 1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406007.htm
    [18] 国家安全监管总局, 国家煤矿安监局, 国家能源局, 等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S]. 北京: 煤炭工业出版社, 2017.

    State Administration of Safety, National Coal Mine Safety Administration, National Energy Administration, et al. Code for coal pillar retention and pressed coal mining in buildings, water bodies, railways and main shafts[S]. Beijing: China Coal Industry Publishing House, 2017.
    [19] 杨伦. 我国首例离层注浆减沉试验的再思考[J]. 中国地质灾害与防治学报, 2006, 17(1): 102-104.. doi: 10.3969/j.issn.1003-8035.2006.01.025

    YANG Lun. Re-thinking about the first subsidence reducing test of injecting grout into separated beds in China[J]. The Chinese Journal of Geological Hazard and Control, 2006, 17(1): 102-104.. doi: 10.3969/j.issn.1003-8035.2006.01.025
    [20] 唐亦川, 邢聪聪, 刘东海, 等. 缓倾斜煤层走向长壁式工作面地表沉陷盆地模型[J]. 煤田地质与勘探, 2020, 48(5): 165-173.. doi: 10.3969/j.issn.1001-1986.2020.05.020

    TANG Yichuan, XING Congcong, LIU Donghai, et al. Model of surface subsidence basin for long-wall working face along strike of gently inclined coal seam[J]. Coal Geology & Exploration, 2020, 48(5): 165-173.. doi: 10.3969/j.issn.1001-1986.2020.05.020
    [21] 崔希民, 邓喀中. 煤矿开采沉陷预计理论与方法研究评述[J]. 煤炭科学技术, 2017, 45(1): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201701027.htm

    CUI Ximin, DENG Kazhong. Research review of predicting theory and method for coal mining subsidence[J]. Coal Science and Technology, 2017, 45(1): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201701027.htm
    [22] 郭文兵, 邓喀中, 邹友峰. 条带开采地表移动参数研究[J]. 煤炭学报, 2005, 30(2): 182-186.. doi: 10.3321/j.issn:0253-9993.2005.02.011

    GUO Wenbing, DENG Kazhong, ZOU Youfeng. Research on surface movement parameters of strip-partial mining[J]. Journal of China Coal Society, 2005, 30(2): 182-186.. doi: 10.3321/j.issn:0253-9993.2005.02.011
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  11
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 修回日期:  2021-04-13
  • 发布日期:  2021-06-25

目录

    /

    返回文章
    返回