留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

论煤地质学与碳中和

桑树勋 王冉 周效志 黄华州 刘世奇 韩思杰

桑树勋, 王冉, 周效志, 黄华州, 刘世奇, 韩思杰. 论煤地质学与碳中和[J]. 煤田地质与勘探, 2021, 49(1): 1-11. doi: 10.3969/j.issn.1001-1986.2021.01.001
引用本文: 桑树勋, 王冉, 周效志, 黄华州, 刘世奇, 韩思杰. 论煤地质学与碳中和[J]. 煤田地质与勘探, 2021, 49(1): 1-11. doi: 10.3969/j.issn.1001-1986.2021.01.001
SANG Shuxun, WANG Ran, ZHOU Xiaozhi, HUANG Huazhou, LIU Shiqi, HAN Sijie. Review on carbon neutralization associated with coal geology[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 1-11. doi: 10.3969/j.issn.1001-1986.2021.01.001
Citation: SANG Shuxun, WANG Ran, ZHOU Xiaozhi, HUANG Huazhou, LIU Shiqi, HAN Sijie. Review on carbon neutralization associated with coal geology[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 1-11. doi: 10.3969/j.issn.1001-1986.2021.01.001

论煤地质学与碳中和

doi: 10.3969/j.issn.1001-1986.2021.01.001
基金项目: 

国家自然科学基金项目(42030810,41727801)

详细信息
    第一作者:

    桑树勋,1967年生,男,河北唐山人,博士,教授,博士生导师,从事煤地质与煤系非常规油气勘探开发、二氧化碳地质封存相关研究工作.E-mail:shxsang@cumt.edu.cn

  • 中图分类号: P618

Review on carbon neutralization associated with coal geology

  • 摘要: 煤基碳排放构成了中国碳排放总量中最重要的部分,做好煤基碳减排和煤炭高效洁净低碳化利用是实现“碳中和”国家目标的重要途径,碳中和背景下的煤地质学发展值得关注。系统评述与碳中和相关的煤地质学研究领域,分析煤地质学在碳中和研究与工程实践中的作用和应用前景,探讨碳中和背景下煤地质学的重要发展方向。取得以下认识:推进清洁煤地质研究、服务煤的高效洁净化燃烧,勘探开发煤系天然气低碳燃料、优化一次能源结构和化石能源结构,开展煤化工资源勘查与开发地质保障研究、推动煤炭的低碳能源转化和新型煤化工产业发展,深化瓦斯地质研究、提高煤矿瓦斯(井下)抽采率、控制煤矿瓦斯的大气排放和泄漏,研究煤层甲烷天然逸散和煤层自燃排放、控制煤层露头的天然排放,发展煤层CO2地质封存与煤层气强化开发(CO2-ECBM)技术、推动碳捕获、利用与封存(CCUS)技术发展及其在火力电厂烟气碳减排中的商业化应用,研究煤炭勘查企业的碳足迹、实现企业净零排放,是与煤地质学紧密相关的碳减排技术路径;其中煤层甲烷与煤系气高效勘探开发、深部煤层CO2-ECBM、煤层露头气体逸散与自燃发火控制、洁净煤地质与煤炭精细勘查是碳中和背景下煤地质学优先发展的重要领域。

     

  • [1] BAMMINGER C,POLL C,MARHAN S. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application[J]. Global Change Biology,2018,24(1):318-334.
    [2] BONGAARTS J. Intergovernmental panel on climate change special report on global warming of 1.5℃ Switzerland:IPCC,2018[J]. Population and Development Review,2019,45(1):251-252.
    [3] 邓明君,罗文兵,尹立娟. 国外碳中和理论研究与实践发展述评[J]. 资源科学,2013,35(5):1084-1094.

    DENG Mingjun,LUO Wenbing,YIN Lijuan. A systematic review of international theory,research and practice on carbon neutrality[J]. Resources Science,2013,35(5):1084-1094.
    [4] VOLKART K,WEIDMANN N,BAUER C,et al. Multi-criteria decision analysis of energy system transformation pathways:A case study for Switzerland[J]. Energy Policy,2017,106:155-168.
    [5] PURSIHEIMO E,HOLTTINEN H,KOLJONEN T. Path toward 100% renewable energy future and feasibility of power-to-gas technology in Nordic countries[J]. Institution of Engineering and Technology,2017,11:1695-1706.
    [6] CONNOLLY D,LUND H,MATHIESEN B V. Smart energy Europe:The technical and economic impact of one potential 100% renewable energy scenario for the European union[J]. Renewable and Sustainable Energy Reviews,2016,60:1634-1653.
    [7] VAILLANCOURT K,BAHN O,FRENETTE E,et al. Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework[J]. Applied Energy,2017,195:774-785.
    [8] FREW B A,BECKER S,DVORAK M J,et al. Flexibility mechanisms and pathways to a highly renewable US electricity future[J]. Energy,2016,101:65-78.
    [9] SHAO Shuai,LIU Jianghua,GENG Yong,et al. Uncovering driving factors of carbon emissions from China's mining sector[J]. Applied Energy,2016,166:220-238.
    [10] ZHANG Yuejun,DA Yabin. The decomposition of energy-related carbon emission and its decoupling with economic growth in China[J]. Renewable and Sustainable Energy Reviews,2015,41:1255-1266.
    [11] 王允诚. 储层地质学[M]. 北京:地质出版社,1999.

    WANG Yuncheng. Reservoir Geology[M]. Beijing:Geological Publishing House,1999.
    [12] MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36-81.
    [13] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64-68.

    GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64-68.
    [14] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598-1604.

    ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598-1604.
    [15] TAO Shu,CHEN Shida,PAN Zhejun. Current status,challenges,and policy suggestions for coalbed methane industry development in China:A review[J]. Energy Science and Engineering,2019,7(4):1059-1074.
    [16] 桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531-2543.

    SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531-2543.
    [17] 李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24-31.

    LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):24-31.
    [18] SU Shi,HAN Jiaye,WU Jinyan,et al. Fugitive coal mine methane emissions at five mining areas in China[J]. Atmospheric Environment,2011,45(13):2220-2232.
    [19] LI Wei,YOUNGER P L,CHENG Yuanping,et al. Addressing the CO2 emissions of the world's largest coal producer and consumer:Lessons from the Haishiwan coalfield,China[J]. Energy,2015,80:400-413.
    [20] CHEN G Q,ZHANG Bo. Greenhouse gas emissions in China 2007:Inventory and input-output analysis[J]. Energy Policy,2010,38(10):6180-6193.
    [21] JU Yiwen,SUN Yue,SA Zhanyou,et al. A new approach to estimate fugitive methane emissions from coal mining in China[J]. Science of the Total Environment,2016,543(Part A):514-523.
    [22] 李增学. 瓦斯地质学[M]. 北京:煤炭工业出版社,2009:44-47.

    LI Zengliang. Gas geology[M]. Beijing:China Coal Industry Publishing House,2009:44-47.
    [23] FENG Qiyan,LI Ting,QIAN Bin,et al. Erratum to:Chemical characteristics and utilization of coal mine drainage in China[J]. Mine Water and the Environment,2014,33(3):287-288.
    [24] ZHU Chuanjie,LIN Baiquan. Effect of igneous intrusions and normal faults on coalbed methane storage and migration in coal seams near the outcrop[J]. Natural Hazards,2015,77(1):17-38.
    [25] 蒋春林,杨胜强,宋万新,等. 煤氧化过程中指标性气体的确定[J]. 煤矿安全,2012,43(10):185-187.

    JIANG Chunlin,YANG Shengqiang,SONG Wanxin,et al. Determination of index gas in coal oxidation process[J]. Safety in Coal Mines,2012,43(10):185-187.
    [26] 朱令起,周心权,朱迎春. 东欢坨煤矿自然发火标志气体的优化选择[J]. 西安科技大学学报,2008,28(2):288-292.

    ZHU Lingqi,ZHOU Xinquan,ZHU Yingchun. Optimal selection for indicator gas of spontaneous combustion of Donghuantuo coal mine[J]. Journal of Xi'an University of Science and Technology,2008,28(2):288-292.
    [27] 王文才,张培,任春雨,等. 煤田露头火区标志性气体确定的试验研究及应用[J]. 煤炭科学技术,2016,44(3):55-59.

    WANG Wencai,ZHANG Pei,REN Chunyu,et al. Experiment study and application of indicated gas determination to fire area in outcrop of coalfield[J]. Coal Science and Technology,2016,44(3):55-59.
    [28] 韩佩博. 三维采动应力条件下煤层覆岩及底板裂隙场演化规律与瓦斯运移特征研究[D]. 重庆:重庆大学,2015. HAN Peibo. Fracture evolution law and gas migration characteristic of overburden and underlying strata in three dimensional mining-induced stress conditions[D]. Chongqing:Chongqing University,2015.
    [29] SMITH M L,GVAKHARIA A,KORT E A,et al. Airborne quantification of methane emissions over the four corners region[J]. Environ. Science Technology,2017,51(10):5832-5837.
    [30] 戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报,2018,63(14):1291-1305.

    DAI Jinxing. Coal-derived gas theory and its discrimination[J]. Chinese Science Bulletin,2018,63(14):1291-1305.
    [31] 梁冰,石迎爽,孙维吉,等. 中国煤系"三气"成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167-173.

    LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Reservoir forming characteristics of "The Three Gases"in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society,2016,41(1):167-173.
    [32] 秦勇,申建,沈玉林,等. 苏拉特盆地煤系气高产地质原因及启示[J]. 石油学报,2019,40(10):1147-1157.

    QIN Yong,SHEN Jian,SHEN Yulin,et al. Geological causes and inspirations for high production of coal measure gas in Surat Basin[J]. Acta Petrolei Sinica,2019,40(10):1147-1157.
    [33] 李勇,王延斌,孟尚志,等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报,2020,45(4):1406-1418.

    LI Yong,WANG Yanbin,MENG Shangzhi,et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society,2020,45(4):1406-1418.
    [34] 秦勇,吴建光,申建,等. 煤系气合采地质技术前缘性探索[J]. 煤炭学报,2018,43(6):1504-1516.

    QIN Yong,WU Jianguang,SHEN Jian,et al. Frontier research of geological technology for coal measure gas joint-mining[J]. Journal of China Coal Society,2018,43(6):1504-1516.
    [35] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性:煤系"三气"及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14-23.

    QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14-23.
    [36] BUSCH A,GENSTERBLUM Y. CBM and CO2-ECBM related sorption processes in coal:A review[J]. International Journal of Coal Geology,2011,87(2):49-71.
    [37] RODRIGUES C F A,DINIS M A P,SOUSA M J L. Review of European energy policies regarding the recent"carbon capture, utilization and storage"technologies scenario and the role of coal seams[J]. Environmental Earth Sciences,2015,74(3):2553-2561.
    [38] DIAMANTE J A R,TAN R R,FOO D C Y,et al. Unified pinch approach for targeting of carbon capture and storage(CCS) systems with multiple time periods and regions[J]. Journal of Cleaner Production,2014,71:67-74.
    [39] GODEC M,KOPERNA G,GALE J. CO2-ECBM:A review of its status and global potential[J]. Energy Procedia,2014,63:5858-5869.
    [40] 叶建平,张兵,韩学婷,等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报,2016,41(1):149-155.

    YE Jianping,ZHANG Bing,HAN Xueting,et al. Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):149-155.
    [41] PAN Zhejun,YE Jianping,ZHOU Fubao,et al. CO2 storage in coal to enhance coalbed methane recovery:A review of field experiments in China[J]. International Geology Review,2018,60(5/6):754-776.
    [42] HU Haixiang,LI Xiaochun,FANG Zhiming,et al. Small-molecule gas sorption and diffusion in coal:Molecular simulation[J]. Energy,2010,35(7):2939-2944.
    [43] LUO Cuijuan,ZHANG Dengfeng,LUN Zengmin,et al. Displacement behaviors of adsorbed coalbed methane on coals by injection of SO2/CO2 binary mixture[J]. Fuel,2019,247:356-367.
    [44] ZHANG Yihuai,LEBEDEV M,YU Hongyan,et al. Experimental study of supercritical CO2 injected into water saturated medium rank coal by X-ray micro CT[J]. Energy Procedia,2018,154:131-138.
    [45] ZHANG Dengfeng,LI Chao,ZHANG Jin,et al. Influences of dynamic entrainer-blended supercritical CO2 fluid exposure on high-pressure methane adsorption on coals[J]. Journal of Natural Gas Science and Engineering,2019,66:180-191.
    [46] LIU Zhengdong,CHENG Yuanping,WANG Yongkang,et al. Experimental investigation of CO2 injection into coal seam reservoir at in-situ stress conditions for enhanced coalbed methane recovery[J]. Fuel,2019,236:709-716.
    [47] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1-9.

    SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1-9.
    [48] 桑树勋,刘士奇,王文峰,等. 深部煤层CO2地质存储与煤层气强化开发有效性理论及评价[M]. 北京:科学出版社,2020.

    SANG Shuxun,LIU Shiqi,WANG Wenfeng,et al. Theory and evaluation of the effectiveness of deep coalbed CO2 geological storage and enhanced coalbed methane development[M]. Beijing:Science Press,2020.
    [49] 桑树勋,刘世奇,王文峰,等. 深部煤层CO2地质存储与煤层气强化开发有效性理论及评价[M]. 北京:科学出版社,2020.

    SANG Shuxun,LIU Shiqi,WANG Wenfeng,et al. Theory and evaluation of the effectiveness of deep coalbed CO2 geological storage and enhanced coalbed methane development[M]. Beijing:Science Press,2020.
    [50] MARKEWITZ P,KUCKSHINRICHS W,LEITNER W,et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2[J]. Energy & Environmental Science,2012,5:7281-7305.
    [51] AYDIN G,KARAKURT I,AYDINER K. Evaluation of geologic storage options of CO2:Applicability,cost,storage capacity and safety[J]. Energy Policy,2010,38(9):5072-5080.
    [52] WEI Ning,LI Xiaochun,FANG Zhiming,et al. Regional resource distribution of onshore carbon geological utilization in China[J]. Journal of CO2 Utilization,2015,11:20-30.
    [53] SUN L,DOU H,LI Z,et al. Assessment of CO2 storage potential and carbon capture,utilization and storage prospect in China[J]. Journal of Energy Institute,2017:1-8.
    [54] ZHANG Zhihua,HUISINGH D. Carbon dioxide storage schemes:Technology,assessment and deployment[J]. Journal of Cleaner Production,2017,142(Part 2):1055-1064.
    [55] CARROll S A,IYER J,WALSH S D C. Influence of chemical,mechanical,and transport processes on wellbore leakage from geologic CO2 storage reservoirs[J]. Accounts of Chemical Research,2017,50(8):1829-1837.
    [56] WHITE C M,SMITH D H,JONES K L,et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery:A review[J]. Energy & Fuels,2005,19(3):559-724.
    [57] 陈铭. 采空区煤岩对CO2的吸附特性实验研究[D]. 阜新:辽宁工程技术大学,2009. CHEN Ming. Coal and rock in the mined-out area on the experimental study of CO2 adsorption[D]. Fuxin:Liaoning Technical University,2009.
    [58] 高飞,邓存宝,王雪峰,等. 采空区煤层封存CO2影响因素分析[J]. 环境工程学报,2017,11(8):4653-4659.

    GAO Fei,DENG Cunbao,WANG Xuefeng,et al. Analysis on factors affecting sequestration of CO2 in coal seam[J]. Chinese Journal of Environmental Engineering,2017,11(8):4653-4659.
    [59] 黄定国,杨小林,余永强,等. CO2地质封存技术进展与废弃矿井采空区封存CO2[J]. 洁净煤技术,2011,17(5):93-96.

    HUANG Dingguo,YANG Xiaolin,YU Yongqiang,et al. Technical progress of CO2 geological sequestration and CO2 sequestration by antiquated mine goaf[J]. Clean Coal Technology,2011,17(5):93-96.
    [60] 吾尔娜,吴昌志,季峻峰,等.松辽盆地徐家围子断陷玄武岩气藏储层的CO2封存潜力研究[J]. 高校地质学报,2012,18(2):239-247.

    WU Erna,WU Changzhi,JI Junfeng,et al. Potential capacity and feasibility of CO2 sequestration in petroleum reservoirs of basaltic rocks:Example from basaltic hydrocarbon reservoir in the Xujiaweizi fault depression the Songliao basin,east China[J]. Geological Journal of China Universities, 2012,18(2):239-247.
    [61] 黄定国,侯兴武,吴玉敏. 煤矿废弃矿井采空区封存CO2的机理分析和能力评价[J]. 环境工程,2014,32(增刊1):1076-1080.

    HUANG Dingguo,HOU Xingwu,WU Yumin. The mechanism and capacity evaluation on CO2 sequestration in antiquated coal mine gob[J]. Environmental Engineering,2014,32(Sup. 1):1076-1080.
    [62] STRACHER G B,TAYLOR T P. Coal fires burning out of control around the world:Thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology,2004,59(1/2):7-17.
    [63] 张建民,管海晏,曹代勇,等. 中国地下煤火研究与治理[M]. 北京:煤炭工业出版社,2008. ZHANG Jianmin,GUAN Haiyan,CAO Daiyong,et al. Underground coal fires in China:Origin,detection,fire-fighting,and prevention[M]. Beijing:China Coal Industry Publishing House,2008.
    [64] JIANG Liming,LIN Hui,MA Jianwei,et al. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires:Wuda(northern China) case study[J]. Remote Sensing of Environment,2011,115(2):257-268.
    [65] DIJK P V,ZHANG Jianzhong,WANG Jun,et al. Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission;based on a comparison of Chinese mining information to previous remote sensing estimates[J]. International Journal of Coal Geology,2011,86(1):108-119.
    [66] 贺永德. 现代煤化工技术手册[M]. 北京:化学工业出版社,2011.

    HE Yongde. Modern coal chemical technology manual[M]. Beijing:Chemical Industry Press,2011.
    [67] 黄华州,桑树勋,易同生,等. 贵州盘北-水城矿区化工煤资源地质评价[J]. 中国煤田地质,2007,19(2):23-26.

    HUANG Huazhou,SANG Shuxun,YI Tongsheng,et al. The geological evaluation of coal industry resources in Panbei-Shuicheng mining area,Guizhou[J]. Coal Geology of China,2007,19(2):23-26.
  • 加载中
计量
  • 文章访问数:  400
  • HTML全文浏览量:  170
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 修回日期:  2021-01-02
  • 发布日期:  2021-02-25

目录

    /

    返回文章
    返回