留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑覆岩原生裂隙的导水裂隙带模拟

李蕊瑞 陈陆望 欧庆华 陈逸飞 王迎新 葛如涛 彭智宏

李蕊瑞, 陈陆望, 欧庆华, 陈逸飞, 王迎新, 葛如涛, 彭智宏. 考虑覆岩原生裂隙的导水裂隙带模拟[J]. 煤田地质与勘探, 2020, 48(6): 179-185,194. doi: 10.3969/j.issn.1001-1986.2020.06.024
引用本文: 李蕊瑞, 陈陆望, 欧庆华, 陈逸飞, 王迎新, 葛如涛, 彭智宏. 考虑覆岩原生裂隙的导水裂隙带模拟[J]. 煤田地质与勘探, 2020, 48(6): 179-185,194. doi: 10.3969/j.issn.1001-1986.2020.06.024
LI Ruirui, CHEN Luwang, OU Qinghua, CHEN Yifei, WANG Yingxin, GE Rutao, PENG Zhihong. Numerical simulation of fractured water-conducting zone by considering native fractures in overlying rocks[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 179-185,194. doi: 10.3969/j.issn.1001-1986.2020.06.024
Citation: LI Ruirui, CHEN Luwang, OU Qinghua, CHEN Yifei, WANG Yingxin, GE Rutao, PENG Zhihong. Numerical simulation of fractured water-conducting zone by considering native fractures in overlying rocks[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 179-185,194. doi: 10.3969/j.issn.1001-1986.2020.06.024

考虑覆岩原生裂隙的导水裂隙带模拟

doi: 10.3969/j.issn.1001-1986.2020.06.024
基金项目: 

国家自然科学基金面上项目(41972256)

详细信息
    第一作者:

    李蕊瑞,1996年生,男,河南南阳人,硕士,从事煤矿水害防治和水文地质与工程地质研究工作.E-mail:rruili1@163.com

    通信作者:

    陈陆望,1973年生,男,湖北蕲春人,博士,教授,博士生导师,从事煤矿水害防治和水文地质与工程地质研究工作.E-mail:luwangchen8888@163.com

  • 中图分类号: TD 313

Numerical simulation of fractured water-conducting zone by considering native fractures in overlying rocks

Funds: 

National Natural Science Foundation of China(41972256)

  • 摘要: 导水裂隙带高度的确定对松散承压含水层下煤矿安全开采和矿区生态环境保护具有重要意义。以往根据塑性区判断导水裂隙带范围的数值模拟方法不能完全反映覆岩的破断机制。为了更准确地预测导水裂隙带发育高度,应用断裂力学方法,将裂纹尖端K场区内的应力强度因子断裂判据与摩尔-库伦屈服准则结合,提出了原生裂隙存在时的岩石断裂准则。利用自仿射分形模型建立起原生裂隙场分布,并通过有限元分析软件COMSOL Multiphysics将原生裂隙场和岩石断裂准则应用到导水裂隙带发育的数值模拟中,对淮北煤田青东煤矿的839工作面开采进行了模拟计算。结果显示,考虑原生裂隙时,导水裂隙带在贯通后高度达到92.5 m。与传统数值模拟和经验公式法相比,考虑原生裂隙的模拟结果与现场测量结果更为接近。这说明,采用自仿射分形模型所生成的裂隙场可以较好地模拟岩体内复杂而无序的原生裂隙分布,且与传统数值模拟和经验公式法相比,考虑原生裂隙的模拟方法能够更好地反映导水裂隙带的发育规律。

     

  • [1] GUO Wenbing,ZHAO Gaobo,LOU Gaozhong,et al. A new method of predicting the height of the fractured water-conducting zone due to high-Intensity longwall coal mining in China[J]. Rock Mechanics and Rock Engineering,2019,52(8):2789-2802.
    [2] LIU Yu,LIU Qimeng,LI Wenping,et al. Height of water-conducting fractured zone in coal mining in the soil-rock composite structure overburdens[J]. Environmental Earth Sciences,2019,78:242.
    [3] LAMOREAUX J W,WU Qiang,ZHOU Wanfang. New development in theory and practice in mine water control in China[J]. Carbonates and Evaporites,2014,29(2):141-145.
    [4] 王虎,岳建华,姜志海,等. 逐阶段安全提高巨厚松散含水层下煤层开采上限研究[J]. 煤田地质与勘探,2013,41(6):61-63.

    WANG Hu,YUE Jianhua,JIANG Zhihai,et al. Safely improving by stage the upper limit under extremely thick loose aquifer[J]. Coal Geology & Exploration,2013,41(6):61-63.
    [5] 裴文明,张慧,鞠昌华,等. 基于韦伯-费希纳定律的淮南采煤沉陷水域水环境综合预警评价[J]. 煤田地质与勘探,2020,48(3):1-7.

    PEI Wenming,ZHANG Hui,JU Changhua,et al. Water environment comprehensive forewarning for waterlogged area in Huainan based on Weber-Fechner law[J]. Coal Geology & Exploration,2020,48(3):1-7.
    [6] NAN Zhou,MENG Li,ZHANG Jixiong,et al. Roadway backfill method to prevent geohazards induced by room and pillar mining:A case study in Changxing coal mine,China[J]. Natural Hazards and Earth System Sciences,2016,16(12):2473-2484.
    [7] 刘英锋,王世东,王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报,2014,39(10):1970-1976.

    LIU Yingfeng,WANG Shidong,WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970-1976.
    [8] MIAO Xiexing,CUI Ximin,WANG Jinan,et al. The height of fractured water-conducting zone in undermined rock strata[J]. Engineering Geology,2011,120:32-39.
    [9] 许家林,王晓振,刘文涛,等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380-385.

    XU Jialin,WANG Xiaozhen,LIU Wentao,et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380-385.
    [10] ZHAO Dekang,WU Qiang. An approach to predict the height of fractured water-conducting zone of coal roof strata using random forest regression[J]. Scientific Reports,2018,8:10986.
    [11] LI Sheng,FAN Chaojun,LUO Mingkun,et al. Structure and deformation measurements of shallow overburden during top coal caving longwall mining[J]. International Journal of Mining Science and Technology,2017,27(6):1081-1085.
    [12] 王世东,谢伟,罗利卜. 霍洛湾煤矿22101工作面顶板两带发育规律[J]. 煤田地质与勘探,2009,37(3):38-40.

    WANG Shidong,XIE Wei,LUO Libo. Developmental rules of the hydraulic fractured zone of working face 22101 in Huoluowan coal mine[J]. Coal Geology & Exploration,2009,37(3):38-40.
    [13] 陈陆望,桂和荣,李一帆. UDEC模拟厚松散层及超薄覆岩条件下开采防水煤柱覆岩突水可能性[J]. 水文地质工程地质,2007,34(1):53-56.

    CHEN Luwang,GUI Herong,LI Yifan. UDEC simulation of water inrush possibility of mining in waterproof coal pillar under the thick loose layer and ultra-thin overburden[J]. Hydrogeology & Engineering Geology,2007,34(1):53-56.
    [14] 李剑. 含水层下矸石充填采煤覆岩导水裂隙演化机理及控制研究[D]. 徐州:中国矿业大学,2013. LI Jian. Evolution mechanism and control of water-flowing fracture with gangue backfill under aquifer in coal mines[D]. Xuzhou:China University of Mining and Technology,2013.
    [15] 赵先涛. 重庆地区典型岩石损伤断裂特性实验研究[D]. 重庆:重庆交通大学,2015.

    ZHAO Xiantao. Testing study on damage and fracture properties of typical rock in Chongqing[D]. Chongqing:Chongqing Jiaotong University,2015.
  • 加载中
计量
  • 文章访问数:  109
  • HTML全文浏览量:  17
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 修回日期:  2020-09-30
  • 发布日期:  2020-12-25

目录

    /

    返回文章
    返回