郭修成. 单轴应力下的孔洞–裂隙扩展规律数值模拟[J]. 煤田地质与勘探, 2020, 48(2): 179-186,194. DOI: 10.3969/j.issn.1001-1986.2020.02.027
引用本文: 郭修成. 单轴应力下的孔洞–裂隙扩展规律数值模拟[J]. 煤田地质与勘探, 2020, 48(2): 179-186,194. DOI: 10.3969/j.issn.1001-1986.2020.02.027
GUO Xiucheng. Numerical simulation of propagation law of pore-fracture under uniaxial stress[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 179-186,194. DOI: 10.3969/j.issn.1001-1986.2020.02.027
Citation: GUO Xiucheng. Numerical simulation of propagation law of pore-fracture under uniaxial stress[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 179-186,194. DOI: 10.3969/j.issn.1001-1986.2020.02.027

单轴应力下的孔洞–裂隙扩展规律数值模拟

Numerical simulation of propagation law of pore-fracture under uniaxial stress

  • 摘要: 为研究不同孔洞-裂隙(简称"孔-隙")赋存条件下的裂纹扩展规律,利用RFPA软件,对不同裂纹倾角及不同非均质系数下的岩体破坏进行数值模拟分析,获得其裂纹扩展过程、声发射规律、应力-应变曲线,同时与原试验结果进行对比验证。结果表明:完整试样裂纹沿着剪切方向产生,含孔-隙试样裂纹沿裂隙尖端及孔口侧边产生;翼裂纹贯穿试件的同时,在预制裂纹尖端或孔口侧边产生水平方向的次生裂纹,并产生分叉,非均质系数影响次生裂纹走向;压载前期试样以拉破坏为主,压载后期以拉-剪组合破坏为主,次生裂纹的产生与剪切破坏有关;声发射累计能量与声发射累计数前期缓慢增大,后期迅速增大,预制裂纹倾角越小,非均质系数越大,声发射累计能量越大;不同裂纹倾角及不同非均质系数试件的应力-应变曲线均经历3个阶段:弹性变形阶段、非线性变形阶段及残余变形阶段,孔-隙的存在降低了试样的峰值强度,影响试件的脆性度。研究结果为进一步认识孔-隙相互作用规律提供了参考。

     

    Abstract: In order to study the law of crack propagation under different pore-fracture conditions, the crack propagation process, acoustic emission law and stress-strain curve under different crack inclination angle and different heterogeneous coefficient were numerically simulated by using RFPA software. At the same time, the results are compared with the experimental results. The results show that the cracks of the intact specimen are produced along the shear direction, while the cracks of the specimens with pores occur along the side of the crack tip and the orifice. The secondary cracks in horizontal direction and bifurcation at the prefabricated crack tip or the side of the orifice at the same time are produced through the specimens with wing cracks, and the heterogeneity coefficient affects the strike of the secondary cracks. Pre-ballast specimen with tensile failure in the late stage of the main and ballast stage, the tensile-shear combination is mainly destroyed, and the generation of secondary cracks is related to the shear failure. The cumulative energy of the acoustic emission and the acoustic emission increased slowly in the early stage; and rapidly in the later stage, the smaller the inclination angle of the pre-cast crack, the larger the heterogeneous coefficient, the greater the accumulated energy of the acoustic emission, and the stress time curves of the test pieces at different crack inclination angles and different mean values are all subjected to three stages. The existence of the porosity reduces the peak strength of the samples and affects the brittleness of the specimens. The results of the study provide some reference for further understanding the law of the pore-gap interaction.

     

/

返回文章
返回