留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压条件下含导电矿物的人工砂岩复电阻率研究

田刚 唐新功 向葵 池美瑶

田刚, 唐新功, 向葵, 池美瑶. 高压条件下含导电矿物的人工砂岩复电阻率研究[J]. 煤田地质与勘探, 2019, 47(2): 183-188,194. doi: 10.3969/j.issn.1001-1986.2019.02.028
引用本文: 田刚, 唐新功, 向葵, 池美瑶. 高压条件下含导电矿物的人工砂岩复电阻率研究[J]. 煤田地质与勘探, 2019, 47(2): 183-188,194. doi: 10.3969/j.issn.1001-1986.2019.02.028
TIAN Gang, TANG Xingong, XIANG Kui, CHI Meiyao. Study on complex resistivity of artificial sandstone containing conductive mineral under high pressure[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 183-188,194. doi: 10.3969/j.issn.1001-1986.2019.02.028
Citation: TIAN Gang, TANG Xingong, XIANG Kui, CHI Meiyao. Study on complex resistivity of artificial sandstone containing conductive mineral under high pressure[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 183-188,194. doi: 10.3969/j.issn.1001-1986.2019.02.028

高压条件下含导电矿物的人工砂岩复电阻率研究

doi: 10.3969/j.issn.1001-1986.2019.02.028
基金项目: 

国家自然科学基金项目(41674107,41874119,41574064);国家重点研发计划项目(2017YFB0202904)

详细信息
    第一作者:

    田刚,1993年生,男,湖北荆州人,硕士,研究方向为岩石物理学.E-mail:17786527163@163.com

    通信作者:

    唐新功,1968年生,男,河南平顶山人,博士,教授,研究方向为电磁法勘探、岩石物理学与地球动力学.E-mail:tangxg@yangtzeu.edu.cn

  • 中图分类号: P319.2

Study on complex resistivity of artificial sandstone containing conductive mineral under high pressure

Funds: 

National Natural Science Foundation of China(41674107,41874119,41574064)

  • 摘要: 天然岩样由于孔隙结构复杂、骨架成分非单一,导致复电阻率研究困难。考虑到根据理想模型制作的人工岩样能够更好地进行实验研究,选用黄铜粉、黄铁矿砂、石墨粉、环氧树脂等材料,人工合成了不同矿物含量的柱状标准岩样,在不同高压条件下使用AutoLab-1000设备测量了标样的复电阻率,并基于Debye分解模型反演获得了人工砂岩标样的零频电阻率、极化率、时间常数等参数;详细讨论了各个模型参数与导电矿物含量、连通性、地层压力等因素的关系,研究发现地层压力和矿物成分对极化率有较大的影响。研究结果对认识高压条件下人工砂岩标样的电性特征具有实际意义。

     

  • [1] PELTON W H,WARD S H,HALLOF P G,et al. Mineral discrimination and removal of inductive coupling with multi-frequency IP[J]. Geophysics,1978,43(3):588-609.
    [2] DIAS C A. Analytical model for a polarizable medium at radio and lower frequencies[J]. Journal of Geophysical Research,2012,77(26):4945-4956.
    [3] DIAS C A. Developments in a model to describe low frequency electrical polarization of rocks[J]. Geophysics,2000,65(2):437-451.
    [4] 蒋才洋. 岩(矿)石复电阻率测试与复阻抗模型研究[D]. 抚州:东华理工大学,2014.
    [5] NORDSIEK S,WALLER A. A new approach to fitting in-duced-polarization spectra[J]. Geophysics,2008,73(6):235-245.
    [6] KAVIAN M,SLOB E C,MULDER W A,et al. A new empirical complex electrical resistivity model[J]. Geophysics,2012,77(3):185-191.
    [7] 张赛珍,李英贤,张树椿,等. 我国几个金属矿区岩(矿)石的低频电相位频率特性及其影响因素[J]. 地球物理学报,1984,27(2):176-189.

    ZHANG Saizhen,LI Yingxian,ZHANG Shuchun,et al. The low frequency electrical phase spectra of mineralized rocks(ores) and some factors which influence them in some sulfide[J]. Chinese Journal of Geophysics,1984,27(2):176-189.
    [8] 张赛珍,王式铭. 影响矿化岩石和矿石极化率(η)值的因素及其作用规律[J]. 地质学报,1974,48(1):95-112.

    ZHANG Saizhen,WANG Shiming. On the factors affecting the polarizability η value of the mineralized rocks and related ores[J]. Acta Geologica Sinica,1974,48(1):95-112.
    [9] 范宜仁,刘兵开,赵文杰,等. 岩石激发极化电位的实验研究[J]. 测井技术,1997,21(4):241-246.

    FAN Yiren,LIU Bingkai,ZHAO Wenjie,et al. A laboratory study on the characteristics of the induced polarization of rock[J]. Well Logging Technology,1997,21(4):241-246.
    [10] NORBISRATH J,EBERLI G P,WEGER R J. Complex resistivity spectra for estimating permeability in dolomites from the Mississippian Madison Formation, Wyoming[J]. Marine and Petroleum Geology,2018,89(2):479-487.
    [11] WONG J. An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores[J]. Geophysics,1979,44(7):1245-1265.
    [12] 黄理善,敬荣中,张胜业,等. 岩矿石模型的复电阻率研究[J]. 地球物理学进展,2014,29(6):2657-2664.

    HUANG Lishan,JING Rongzhong,ZHANG Shengye,et al. Study of the complex resistivity of rocks and ores model[J]. Progress in Geophysics,2014,29(6):2657-2664.
    [13] 肖占山,曾志国,朱世和,等. 基于岩石电性参数频散特性评价润湿性的实验方法研究[J]. 地球物理学报,2009,52(5):1326-1332.

    XIAO Zhanshan,ZENG Zhiguo,ZHU Shihe,et al. An experimental study of wettability evaluation based on frequency dispersion property of rock electric parameters[J]. Chinese Journal of Geophysics,2009,52(5):1326-1332.
    [14] 肖占山,徐世浙,罗延钟,等. 含气泥质砂岩频散特性的实验研究[J]. 天然气工业,2006,26(10):63-65.

    XIAO Zhanshan,XU Shizhe,LUO Yanzhong,et al. Ex-perimental study on dispersion characteristics of gas bearing shaly sand[J]. Natural Gas Industry,2006,26(10):63-65.
    [15] 赵云生,肖占山,田钢,等. 不同物性参数的岩石电性参数频散特性实验[J]. 地球物理学进展,2015,30(1):339-342.

    ZHAO Yunsheng,XIAO Zhanshan,TIAN Gang,et al. Experimental of rocks electrical parameters dispersion properties with different physical parameters[J]. Progress in Geophysics,2015,30(1):339-342.
    [16] 向葵,胡文宝,严良俊,等. 川黔地区页岩复电阻率的频散特性[J]. 石油地球物理勘探,2014,49(5):1013-1019.

    XIANG Kui,HU Wenbao,YAN Liangjun,et al. Complex resistivity dispersion characteristics of shale samples in Si-chuan and Guizhou area[J]. Oil Geophysical Prospecting,2014,49(5):1013-1019.
    [17] 张元中,楚泽涵,李铭,等. 岩石声频散的实验研究及声波速度的外推[J]. 地球物理学报,2001,44(1):103-111.

    ZHANG Yuanzhong,CHU Zehan,LI Ming,et al. An experimental study on acoustic dispersion of rock and extrapolation of the velocity[J]. Chinese Journal of Geophysics,2001,44(1):103-111.
    [18] 石昆法,吴璐苹,李英贤,等. 储层条件下岩石样品电性参数测定及规律[J]. 地球物理学报,1995,38(增刊1):295-302.

    SHI Kunfa,WU Yiping,LI Yingxian,et al. Determine and regularity of electrical rock electricity parameter[J]. Chinese Journal of Geophysics,1995,38(S1):295-302.
    [19] 赵发展,王贇,王界益,等. 准噶尔和塔里木盆地不同岩性岩电参数研究[J]. 地球物理学进展,2006,21(4):1258-1265.

    ZHAO Fanzhan,WANG Yun,WANG Jieyi,et al. Rock electro parameters variant lithologic characters in Junggar and Tarim basin[J]. Progress in Geophysics,2006,21(4):1258-1265.
    [20] 施斌全. 中深层天然气储层岩石物理实验研究[D]. 青岛:中国石油大学(华东),2007.
    [21] 韩学辉,杨龙,侯庆宇,等. 一种分散泥质胶结疏松砂岩的人工岩样制作新方法[J]. 地球物理学进展,2013,28(6):2944-2949.

    HAN Xuehui,YANG Long,HOU Qingyu,et al. A new method for making artificial rock of unconsolidated sandstone cemented by dispersed shale[J]. Progress in Geophysics,2013,28(6):2944-2949.
    [22] 刘祝萍,吴小薇,楚泽涵,等. 岩石声学参数的实验测量及研究[J]. 地球物理学报,1994,37(5):659-666.

    LIU Zhuping,WU Xiaowei,CHU Zehan,et al. Laboratory study of acoustic parameters of rock[J]. Chinese Journal of Geophysics,1994,37(5):659-666.
    [23] 丁拼搏,狄帮让,魏建新,等. 不同尺度裂缝对弹性波速度和各向异性影响的实验研究[J]. 地球物理学报,2017,60(4):1538-1546.

    DING Pingbo,DI Bangrang,WEI Jianxin,et al. Velocity and anisotropy influenced by different scale fractures:Experiments on synthetic rocks with controlled fractures[J]. Chinese Journal of Geophysics,2017,60(4):1538-1546.
    [24] 赵阳,周宏伟,钟江城,等. 黏土配比对人工砂岩渗透率影响规律的实验研究[J]. 岩石力学与工程学报,2018,37(增刊1):3253-3262.

    ZHAO Yang,ZHOU Hongwei,ZHONG Jiangcheng,et al. An experimental study on artificial sandstone-clay proportioning on permeation behavior[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(S1):3253-3262.
    [25] VINEGARH J,WAXMANM H. Induced polarization of shaly sands[J]. Geophysics,1984,49(8):1267-1287.
    [26] REVIL A. Spectral induced polarization of shaly sands:Influence of the electrical double layer[J]. Water Resources Research,2012,48,W02517.
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  41
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-23
  • 发布日期:  2019-04-25

目录

    /

    返回文章
    返回