留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄陇煤田综放采煤顶板导水裂缝带高度发育特征

李超峰

李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探, 2019, 47(2): 129-136. doi: 10.3969/j.issn.1001-1986.2019.02.020
引用本文: 李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探, 2019, 47(2): 129-136. doi: 10.3969/j.issn.1001-1986.2019.02.020
LI Chaofeng. Characteristics of height of water flowing fractured zone caused during ful-ly-mechanized caving mining in Huanglong coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 129-136. doi: 10.3969/j.issn.1001-1986.2019.02.020
Citation: LI Chaofeng. Characteristics of height of water flowing fractured zone caused during ful-ly-mechanized caving mining in Huanglong coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 129-136. doi: 10.3969/j.issn.1001-1986.2019.02.020

黄陇煤田综放采煤顶板导水裂缝带高度发育特征

doi: 10.3969/j.issn.1001-1986.2019.02.020
基金项目: 

国家重点研发计划资助项目(2017YFC0804106);中煤科工集团西安研究院有限公司科技创新基金项目(2015XAYMS19)

详细信息
    第一作者:

    李超峰,1983年生,男,陕西彬州人,博士研究生,助理研究员,从事水文地质及矿井水害防治技术研究.E-mail:lichaofeng007@163.com

  • 中图分类号: TD741

Characteristics of height of water flowing fractured zone caused during ful-ly-mechanized caving mining in Huanglong coalfield

Funds: 

The National Key R&D Program of China(2017YFC0804106)

  • 摘要: 为了研究黄陇煤田综采放顶煤(综放)采煤工艺条件下的导水裂缝带高度及其发育规律,系统收集区内各矿井实测数据资料,采用数理统计和回归分析方法研究导水裂缝带高度与工作面宽度、煤层埋深以及采高的相关关系。研究结果表明:工作面宽度小于240 m且煤层采高为8.5~9.5 m时,软弱覆岩裂采比和导水裂缝带高度恒大于中硬覆岩;工作面宽度大于90 m且煤层采高大于14.5 m时,软弱覆岩裂采比和导水裂缝带高度恒小于中硬覆岩。综放软弱顶板裂采比和导水裂缝带高度随采高增大均呈单峰状,裂采比是采高的二次函数,导水裂缝带高度是采高的三次函数。裂采比最大为30.63倍,拐点处采高3.56 m;导水裂缝带高度最大为239.97 m,拐点处采高10.41 m。由拐点向两侧采高分别减小或增大时,裂采比和导水裂缝带高度均逐渐减小。综放中硬顶板裂采比和导水裂缝带高度受工作面宽度和煤层采高的共同影响。在工作面宽度一定时,裂采比随着煤层采高增大而逐渐减小且变化幅度越来越小,大致趋于[11.00,14.30]数值区间;在煤层采高一定时,工作面宽度越大裂采比越大。导水裂缝带高度随着工作面宽度和煤层采高增大而增大。

     

  • [1] 刘英锋,王新. 黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J]. 西安科技大学学报,2013,33(4):431-435.

    LIU Yingfeng,WANG Xin. Water hazard prevention and control in Huanglong Jurassic coalfield[J]. Journal of Xi'an University of Science and Technology,2013,33(4):431-435.
    [2] 李超峰,张学如. 矿井涌水模式及顶板水害防治关键技术[J]. 煤炭技术,2018,37(6):153-156.

    LI Chaofeng,ZHANG Xueru. Mode of water inflow of mine and key technologies of controlling and preventing wa-ter-inrush from roof[J]. Coal Technology,2018,37(6):153-156.
    [3] 李超峰. 彬长矿区巨厚洛河组垂向差异性研究[J]. 煤炭技术,2018,37(4):131-133.

    LI Chaofeng. Vertical differences of thick Luohe Formation in Binchang mining area[J]. Coal Technology,2018,37(4):131-133.
    [4] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.
    [5] 虎维岳. 矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005.
    [6] 刘英锋,王世东,王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报,2014,39(10):1970-1976.

    LIU Yingfeng,WANG Shidong,WANG Xiaolei. De-velopment characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970-1976.
    [7] 郭小铭,刘英锋,李超峰. 强冲击矿压矿井综放开采覆岩破坏规律研究[J]. 矿业安全与环保,2018,45(3):24-28.

    GUO Xiaoming,LIU Yingfeng,LI Chaofeng. Study on rule of overburden failure under strong rock burst and fully mechanized caving mining[J]. Mining Safety & Environmental Protection,2018,45(3):24-28.
    [8] 李超峰,虎维岳,王云宏,等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探,2018,46(1):101-107.

    LI Chaofeng,HU Weiyue,WANG Yunhong,et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration,2018,46(1):101-107.
    [9] 冯洁,王苏健,陈通,等. 生态脆弱矿区土层中导水裂缝带发育高度研究[J]. 煤田地质与勘探,2018,46(1):97-100.

    FENG Jie,WANG Sujian,CHEN Tong,et al. Height of water flowing fractured zone of soil layer in the ecologically fragile mining area[J]. Coal Geology & Exploration,2018,46(1):97-100.
    [10] 尹尚先,徐斌,徐慧,等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术,2013,41(9):138-142.

    YIN Shangxian,XU Bin,XU Hui,et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology,2013,41(9):138-142.
    [11] 武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013.
    [12] 许家林. 岩层采动裂隙演化规律与应用[M]. 徐州:中国矿业大学出版社,2016.
    [13] 许家林,王晓振,刘文涛,等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380-385.

    XU Jialin,WANG Xiaozhen,LIU Wentao,et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380-385.
    [14] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762-769.

    XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762-769.
    [15] 滕永海. 综放开采导水裂缝带的发育特征与最大高度计算[J]. 煤炭科学技术,2011,39(4):118-120.

    TENG Yonghai. Development features and max height calculation of water conducted fractured zone caused by fully mechanized top coal caving mining[J]. Coal Science and Technology,2011,39(4):118-120.
    [16] 许延春,李俊成,刘世奇,等. 综放开采覆岩"两带"高度的计算公式及适用性分析[J]. 煤矿开采,2011,16(2):4-11.

    XU Yanchun,LI Juncheng,LIU Shiqi,et al. Calculation formula of "Two-Zone" height of overlying strata and its adaptability analysis[J]. Coal Mining Technology,2011,16(2):4-11.
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-23
  • 发布日期:  2019-04-25

目录

    /

    返回文章
    返回