Fracture extension law of hydraulic fracture in coal with different structure
-
摘要: 查明不同煤体结构煤水力压裂时裂缝延伸规律能为合理井网部署奠定基础。以沁水盆地柿庄区块为研究对象,对钻井煤心裂隙进行观测,划分出4种裂隙发育程度煤。基于岩体力学理论,建立了水力压裂过程中裂缝尖端应力场计算模型和水力裂缝能否穿过天然裂隙的判断准则。根据煤层气井实测资料,验证了理论分析的可靠性,得出了不同煤体结构煤的水力压裂裂缝延伸规律。结果表明:考虑诱导应力前后,2组天然裂隙发育煤的水力裂缝延伸规律不同,随着缝长增加,诱导应力随之增大,水力裂缝单一延伸方向变为双向延伸;1组天然裂隙发育煤的发育方向与最大主应力方向夹角较小,导致考虑诱导应力前后水力裂缝的延伸方向变化不明显,整体延伸趋于天然裂隙发育方向;在粒状偶见及粉状无裂隙发育煤中,水力裂缝总是沿着最大主应力方向延伸。研究成果为该区不同应力和裂隙发育下井网合理布置提供了理论依据。Abstract: To find out the fracture extension law of coal hydraulic fracturing with different coal body structures can lay a foundation for reasonable well pattern deployment. Taking Shizhuang block of Qinshui basin as the research object, the fracture of coal core was observed, and four kinds of coal with fracture development degree were divided. Based on the theory of rock mass mechanics, the stress field calculation model of fracture tip and the judgment criterion of whether hydraulic fracture can pass through natural fracture in hydraulic fracturing process were established. According to the measured data of CBM wells, the reliability of theoretical analysis was verified, and the fracture extension law of hydraulic fracturing of coal with different coal body structures was obtained. The results show that the hydraulic fracture extension of two groups of natural fracture development is different before and after the induced stress is considered. With the increase of fracture length, the induced stress increases, and the hydraulic fracture extends from single direction to bidirectional direction. For a group of coal with natural fracture development, because the angle between the development direction of natural fracture and the direction of maximum principal stress is small, the extension direction of hydraulic fracture before and after considering induced stress is not obvious, and the overall extension tends to the natural fissure development direction. Hydraulic fractures always extend along the direction of maximum principal stress for granular occasional and powdery fractured coal. The research results provide a theoretical basis for the reasonable arrangement of the well network under different stress and fracture development in this area.
-
Keywords:
- crack extension /
- Shizhuang /
- hydraulic fracture /
- induced stress /
- natural fracture /
- Qinshui basin
-
-
[1] 陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版),2013,37(5):88-94. CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China Univer-sity of Petroleum(Edition of Natural Science),2013,37(5):88-94.
[2] 王素玲,姜民政,刘合. 基于损伤力学分析的水力压裂三维裂缝形态研究[J]. 岩土力学,2011,32(7):2205-2210. WANG Suling,JIANG Minzheng,LIU He.Study of hydraulic fracturing morphology based on damage mechanics analysis[J]. Rock and Soil Mechanics,2011,32(7):2205-2210.
[3] 侯冰,谭鹏,陈勉,等. 致密灰岩储层压裂裂缝扩展形态试验研究[J]. 岩土工程学报,2016,38(2):219-225. HOU Bing,TAN Peng,CHEN Mian,et al. Experimental investigation on propagation geometry of hydraulic fracture in compact limestone reservoirs[J]. Chinese Journal of Geotechnical Engineering,2016,38(2):219-225.
[4] WU X R,CARLSON A J. Weight functions and stress in-tensity factor solutions[M]. Oxford:Pergamon Press,1991.
[5] 潘林华,程礼军,陆朝晖,等. 页岩储层水力压裂裂缝扩展模拟进展[J]. 特种油气藏,2014,21(4):1-6. PAN Linhua,CHENG Lijun,LU Zhaohui,et al. Simulation of hydraulic fracture propagation in shale reservoir[J]. Special Oil and Gas Reservoirs,2014,21(4):1-6.
[6] 严成增,郑宏,孙冠华,等. 基于FDEM-Flow研究地应力对水力压裂的影响[J]. 岩土力学,2016,37(1):237-246. YAN Chengzeng,ZHENG Hong,SUN Guanhua,et al. Effect of in-situ stress on hydraulic fracturing based on FDEM-Flow[J]. Rock and Soil Mechanics,2016,37(1):237-246.
[7] 袁志刚. 煤岩体水力压裂裂缝扩展及对瓦斯运移影响研究[D]. 重庆:重庆大学,2014. [8] 魏宏超,乌效鸣,李粮纲,等. 煤层气井水力压裂同层多裂缝分析[J]. 煤田地质与勘探,2012,40(6):20-23. WEI Hongchao,WU Xiaoming,LI Lianggang,et al. Multiple fractures in the same seam in hydraulic fracturing of CBM well[J]. Coal Geology & Exploration,2012,40(6):20-23.
[9] 倪小明,林然,张崇崇. 晋城矿区煤层气井连续多次压裂裂缝展布特征[J]. 中国矿业大学学报,2013,42(5):747-754. NI Xiaoming,LIN Ran,ZHANG Chongchong. Char-acteristics of fracture distribution after continuous and repetitive hydraulic fracturing of CBM wells in Jincheng mining area[J]. Journal of China University of Mining & Technology,2013,42(5):747-754.
[10] 赵立强,刘飞,王佩珊,等. 复杂水力裂缝网络延伸规律研究进展[J]. 石油与天然气地质,2014,35(4):562-569. ZHAO Liqiang,LIU Fei,WANG Peishan,et al. A review of creation and propagation of complex hydraulic fracture net-work[J]. Oil & Gas Geology,2014,35(4):562-569.
[11] JOIE G. Numerical simulation of coupled fluid-low/geomeclianical behavior of tight gas reservoirs with stress sensitive permeability[J]. SPE,1997,39(5):1-15.
[12] 赵金洲,李勇明,王松,等. 天然裂缝影响下的复杂压裂裂缝网络模拟[J]. 天然气工业,2014,34(1):68-73. ZHAO Jinzhou,LI Yongming,WANG Song, et al. Simulation of a complex fracture network influenced by natural fractures[J]. Natural Gas Industry,2014,34(1):68-73.
[13] 张士诚,郭天魁,周彤,等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报,2014,35(3):496-503. ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al. Fracture propagation mechanism of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica,2014,35(3):496-503.
[14] 陈立超. 沁水盆地南部煤储层压裂裂缝延展机制及充填模式[D]. 武汉:中国地质大学(武汉),2016. [15] 郭红玉,苏现波,夏大平,等. 煤储层渗透率与地质强度指标的关系研究及意义[J]. 煤炭学报,2010,35(8):1319-1322. GUO Hongyu,SU Xianbo,XIA Daping,et al. Relationship of the permeability and geological strength index(GSI) of coal reservoir and its significance[J]. Journal of China Coal Society,2010,35(8):1319-1322.
[16] 楼一珊. 岩石力学与石油工程[M]. 北京:石油工业出版社,2006. [17] 陈峥嵘,刘书杰,张滨海,等. 沁水盆地北缘煤层气井地应力模型研究[J]. 煤炭科学技术,2018,46(10):136-142. CHEN Zhengrong,LIU Shujie,ZHANG Binhai,et al. Study on geostress model of coalbed methane wells in north edge of Qinshui basin[J]. Coal Science and Technology,2018,46(10):136-142.
-
期刊类型引用(14)
1. 徐凤银,聂志宏,孙伟,熊先钺,徐博瑞,张雷,时小松,刘莹,刘世瑞,赵增平,王渊,黄红星,林海鲲. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系. 煤炭学报. 2024(01): 528-544 . 百度学术
2. 阎纪伟,宋晓夏,梁卫国,李鸿雨,李伟,刘威,孟艳军,夏鹏,卫强强. 西山煤田煤层气井水力压裂效果剖析及启示. 煤炭学报. 2024(08): 3546-3560 . 百度学术
3. 李小刚,唐政,朱静怡,杨兆中,李扬,谢鹏,廖宇. 深层煤岩气压裂研究进展与展望. 天然气工业. 2024(10): 126-139 . 百度学术
4. 秦雷,林海飞,马超,李树刚,赵鹏翔,甘路军,杨二豪,徐金国. 松软煤层水力割缝与柔性封堵气墙隅角瓦斯治理关键技术参数及应用. 湖南科技大学学报(自然科学版). 2024(03): 11-21 . 百度学术
5. 李贵山,于振锋,杨晋东,宋新亚,郭琛. 沁水盆地郑庄区块煤层气水平井钻井体系优化. 煤炭科学技术. 2023(04): 118-126 . 百度学术
6. 李全贵,邓羿泽,胡千庭,张跃兵,宋明洋,刘继川,石佳林. 煤层水力压裂应力与裂隙演化的细观规律. 煤田地质与勘探. 2022(06): 32-40 . 本站查看
7. 喻廷旭,金涛,罗勇,尹中山,朱韩友,田明才. 川南宜宾地区煤层气资源潜力及有利区优选. 煤炭科学技术. 2022(09): 130-137 . 百度学术
8. 王志荣,宋沛,陈玲霞,胡凯. 裂隙性储层压裂缝延伸机理及防治水意义. 东北大学学报(自然科学版). 2021(05): 741-747 . 百度学术
9. 李松林,逄建东,金力钻,王文升,孙玉红. 煤体结构测井评价在煤层气开发中的应用. 测井技术. 2021(02): 173-178 . 百度学术
10. 李宗源,倪小明,石延霞,霍丽芬,李佳峰,张少勇. 马必东区块水力喷射分段压裂工艺优化与应用. 煤矿安全. 2021(12): 78-83 . 百度学术
11. 孟召平,雷钧焕,王宇恒. 基于Griffith强度理论的煤储层水力压裂有利区评价. 煤炭学报. 2020(01): 268-275 . 百度学术
12. 刘乐,胡千庭,李全贵,姜志忠,武晓斌,宋明洋. 流量引起的注入压力变化对水力压裂效果的影响研究. 矿业安全与环保. 2020(04): 1-5+11 . 百度学术
13. 李松林,李忠城,王利娜,段静,向念. 寿阳区块高阶煤煤体结构及破裂压力测井解释方法. 煤田地质与勘探. 2020(06): 146-154 . 本站查看
14. 贾奇锋,刘大锰,蔡益栋. 煤层气开采井间干扰研究进展. 煤炭学报. 2020(S2): 882-893 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 110
- HTML全文浏览量: 16
- PDF下载量: 26
- 被引次数: 23