Abstract:
The development status of the temperature field around the freezing pipe in the method of pipe roofing freezing is the technical focus of this construction method. In order to study the development of the temperature field in this method, two paths are selected in the model, and analysis points are placed on the path. By analyzing the effects of soil thermal conductivity, volumetric heat capacity, latent heat of phase change, and original ground temperature on the development law of the temperature field, the following conclusion was drawn:Compared with the method of freezing the pipe curtain of the Gongbei tunnel in Hong Kong-Zhuhai-Macau, the new method of pipe freezing was adopted. Supporting forms are more flexible and diverse, and are less constrained by the terrain; soil thermal conductivity has a significant effect on the temperature field, the greater the thermal conductivity, the faster the temperature drop, and the greater the magnitude; the volumetric heat capacity has a greater effect on the temperature field, the smaller the volumetric heat capacity, the faster the temperature drop, and the greater the magnitude; the latent heat of soil phase change has almost no effect on the change of temperature field; the lower the original ground temperature, the shorter the freeze time required to reach the same temperature. The results obtained can be used as reference for similar projects in the future.