留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下近钻头随钻测量技术研究现状和发展趋势

郝世俊 褚志伟 李泉新 方俊 陈龙 刘建林

郝世俊,褚志伟,李泉新,等. 煤矿井下近钻头随钻测量技术研究现状和发展趋势[J]. 煤田地质与勘探,2023,51(9):10−19. doi: 10.12363/issn.1001-1986.23.05.0278
引用本文: 郝世俊,褚志伟,李泉新,等. 煤矿井下近钻头随钻测量技术研究现状和发展趋势[J]. 煤田地质与勘探,2023,51(9):10−19. doi: 10.12363/issn.1001-1986.23.05.0278
HAO Shijun,CHU Zhiwei,LI Quanxin,et al. Research status and development trend of near-bit MWD in underground coal mine[J]. Coal Geology & Exploration,2023,51(9):10−19. doi: 10.12363/issn.1001-1986.23.05.0278
Citation: HAO Shijun,CHU Zhiwei,LI Quanxin,et al. Research status and development trend of near-bit MWD in underground coal mine[J]. Coal Geology & Exploration,2023,51(9):10−19. doi: 10.12363/issn.1001-1986.23.05.0278

煤矿井下近钻头随钻测量技术研究现状和发展趋势

doi: 10.12363/issn.1001-1986.23.05.0278
基金项目: 陕西省重点研发计划项目(2023-YBGY-082);贵州省科技计划项目(黔科合支撑[2022]一般006);天地科技重点项目(2022-2-TD-ZD006)
详细信息
    第一作者:

    郝世俊,1970 年生,男,内蒙古凉城人,博士,研究员,博士生导师,从事煤矿区钻探技术装备开发研究与推广应用工作. E-mail:haoshijun@cctegxian.com

    通信作者:

    褚志伟,1989 年生,男,河北廊坊人,博士研究生,助理研究员,从事煤矿井下随钻测量技术研究. E-mail:chuzhiwei@cctegxian.com

  • 中图分类号: TD41

Research status and development trend of near-bit MWD in underground coal mine

  • 摘要: 近钻头随钻测量集成了近钻头多参数测量、跨螺杆钻具供电和通信、涡轮连续发电和高速泥浆脉冲无线传输等多项关键核心技术,可以获取钻头附近多种类型参数,是煤矿井下智能钻探技术的关键组成之一。在充分借鉴地面石油与天然气钻探领域近钻头随钻测量开发经验和发展路径的基础上,分析了现有技术应用于煤矿井下的局限性,依托煤矿井下现阶段随钻测量技术,提出了煤矿井下近钻头随钻测量技术的研究思路,探讨了煤矿井下近钻头随钻测量技术的研究现状,重点解决结构小型化、仪器单元化、防爆模块化、测量协同化和控制整体化的研发技术难题。在煤矿智能化建设大背景下,提出未来需要从近钻头多参数一体化测量、近钻头参数动态监测、近钻头旋转导向钻进和近钻头自适应钻进等方面入手,大力推动煤矿井下近钻头随钻测量与5G通信、大数据、云计算、物联网等新一代信息技术的融合发展。

     

  • 图  近钻头随钻测量系统组成

    Fig. 1  Composition of near-bit MWD system

    图  Auto Trak G3组成

    Fig. 2  Composition of Auto Trak G3

    图  NBIG组成

    Fig. 3  Composition of NBIG

    图  XZ-NBMS组成

    Fig. 4  Composition of XZ-NBMS

    图  煤矿井下近钻头随钻测量技术研究思路

    Fig. 5  Research ideas of near-bit MWD in underground coal mine

    图  煤矿井下随钻测量钻进装备组成

    Fig. 6  Composition of drilling equipment for measurement while drilling in underground coal mine

    图  矿用小直径涡轮发电机组成

    1—本安输出端;2—充电电池;3—控制电路;4—发电单元;5—涡轮单元;6—导轮单元;7—固定组件

    Fig. 7  Composition of small-diameter turbine generator for underground coal mine

    图  煤矿井下有线载波双向通信原理

    Fig. 8  Principle of bidirectional wireline carrier communication in underground coal mine

    图  脉冲发生装置结构

    1—过滤网;2—上支撑件;3—阀头限位件;4—阀头;5—中心杆;6—中支撑件;7—引流件;8—下支撑件;9—外壳

    Fig. 9  Structure of pulse generator

    表  1  石油和天然气钻探领域代表性近钻头产品

    Table  1  Representative near-bit products in oil and gas drilling

    序号生产单位型号测点至钻头
    距离/m
    近钻头测量
    参数
    跨螺杆
    信号传输
    信号
    传输
    应用情况
    1山东胜利伟业
    有限公司
    SL6000NWD≥2.50井斜角、电磁波
    电阻率、自然伽马
    电磁无线短传正脉冲最高进尺925.4 m
    2中国石油钻井工程技术研究院CGDS-1≥0.75井斜角、方位电阻率、方位伽马电磁无线短传正脉冲最长工作
    时间400 h
    3北京六合伟业科技股份有限公司XZ-NBMS≥0.50井斜角、转速、
    方位伽马
    电磁无线短传正脉冲最长工作
    时间161 h
    4中国海洋石油集团有限公司NBIG≥0.50井斜角、方位伽马电磁无线短传正脉冲最高进尺1 091 m
    5贝克休斯公司Auto Trak G3≥1.00井斜角、电阻率电磁无线短传正脉冲应用广泛
    6斯伦贝谢公司NeoSteer≥0.50井斜、振动、冲击电磁无线短传正脉冲应用广泛
    7哈利伯顿公司API≥1.00井斜角、方位伽马电磁无线短传正脉冲应用广泛
    下载: 导出CSV
  • [1] 康红普,王国法,王双明,等. 煤炭行业高质量发展研究[J]. 中国工程科学,2021,23(5):130−138.

    KANG Hongpu,WANG Guofa,WANG Shuangming,et al. High–quality development of China’s coal industry[J]. Strategic Study of Chinese Academy of Engineering,2021,23(5):130−138.
    [2] 王海军,曹云,王洪磊. 煤矿智能化关键技术研究与实践[J]. 煤田地质与勘探,2023,51(1):44−54.

    WANG Haijun,CAO Yun,WANG Honglei. Research and practice on key technologies for intelligentization of coal mine[J]. Coal Geology & Exploration,2023,51(1):44−54.
    [3] 贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五”主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32−44.. doi: 10.3969/j.issn.1001-1986.2021.01.004

    JIA Jiancheng,GONG Zewen,JIN Dewu,et al. The main progress in the 13th five−year plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32−44.. doi: 10.3969/j.issn.1001-1986.2021.01.004
    [4] 陈泽平,闫保永,王国震,等. 煤矿井下随钻测量技术研究现状及展望[J]. 矿业安全与环保,2022,49(6):130−134.. doi: 10.19835/j.issn.1008-4495.2022.06.023

    CHEN Zeping,YAN Baoyong,WANG Guozhen,et al. Research status and prospect of MWD technology in coal mine[J]. Mining Safety & Environmental Protection,2022,49(6):130−134.. doi: 10.19835/j.issn.1008-4495.2022.06.023
    [5] 杨杰,樊志伟,徐红卫. 煤矿井下钻进钻孔随钻测量技术研究进展[J]. 煤炭与化工,2016,39(8):145−146.

    YANG Jie,FAN Zhiwei,XU Hongwei. Research progress of underground drilling measurement technology[J]. Coal and Chemical Industry,2016,39(8):145−146.
    [6] 石智军,许超,李泉新,等. 随钻测量定向钻进技术在煤矿井下地质勘探中的应用[J]. 煤矿安全,2014,45(12):137−140.

    SHI Zhijun,XU Chao,LI Quanxin,et al. Application of MWD directional drilling technology in geologic exploration in underground coal mine[J]. Safety in Coal Mines,2014,45(12):137−140.
    [7] 张磊,刘斌,刘宝振,等. 定向钻探注浆技术在煤矿水害防治中的应用[J]. 陕西煤炭,2022,41(4):209−211.

    ZHANG Lei,LIU Bin,LIU Baozhen,et al. Application of directional drilling grouting technology in water disaster prevention and control of coal mine[J]. Shanxi Coal,2022,41(4):209−211.
    [8] 李泉新,石智军,许超,等. 2311m顺煤层超长定向钻孔高效钻进技术[J]. 煤炭科学技术,2018,46(4):27−32.. doi: 10.13199/j.cnki.cst.2018.04.005

    LI Quanxin,SHI Zhijun,XU Chao,et al. Efficient drilling technique of 2311m ultra−long directional borehole along coal seam[J]. Coal Science and Technology,2018,46(4):27−32.. doi: 10.13199/j.cnki.cst.2018.04.005
    [9] 石智军,许超,李泉新,等. 煤矿井下2570 m顺煤层超深定向孔高效成孔关键技术[J]. 煤炭科学技术,2020,48(1):196−201.

    SHI Zhijun,XU Chao,LI Quanxin,et al. Key technology of high efficiency hole formation for ultra deep directional hole with long 2570 m along seam in underground coal mine[J]. Coal Science and Technology,2020,48(1):196−201.
    [10] 王力,姚宁平,姚亚峰,等. 煤矿井下碎软煤层顺层钻完孔技术研究进展[J]. 煤田地质与勘探,2021,49(1):285−296.

    WANG Li,YAO Ningping,YAO Yafeng,et al. Research progress of drilling and borehole completion technologies in broken soft coal seam in underground coal mine[J]. Coal Geology & Exploration,2021,49(1):285−296.
    [11] 许超,姜磊,陈盼,等. 煤矿井下大盘区瓦斯抽采定向钻进技术与装备[J]. 煤田地质与勘探,2022,50(4):147−152.

    XU Chao,JIANG Lei,CHEN Pan,et al. Directional drilling technology and equipment for gas drainage in large panel of underground coal mines[J]. Coal Geology & Exploration,2022,50(4):147−152.
    [12] 李泉新,刘飞,方俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.

    LI Quanxin,LIU Fei,FANG Jun,et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration,2021,49(6):265−272.
    [13] 陈龙,陈刚,张冀冠. 矿用随钻动态方位伽马仪器的研制与应用[J]. 煤田地质与勘探,2022,50(1):86−91.

    CHEN Long,CHEN Gang,ZHANG Jiguan. Development and application of a mine–used dynamic azimuth gamma instrument while drilling[J]. Coal Geology & Exploration,2022,50(1):86−91.
    [14] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206.

    CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206.
    [15] 侯仕军,丁伟捷,田帅康,等. 随钻测量技术在非油气工程领域的应用现状与展望[J]. 矿业研究与开发,2022,42(12):41−49.

    HOU Shijun,DING Weijie,TIAN Shuaikang,et al. Application status and prospects of MWD technology in non–oil and gas engineering field[J]. Mining Research and Development,2022,42(12):41−49.
    [16] 王鲜,李泉新,许超,等. 顶板复杂岩层无线随钻测量复合定向钻进技术[J]. 煤矿安全,2019,50(9):88−91.

    WANG Xian,LI Quanxin,XU Chao,et al. Composite directional drilling technology for wireless measurement while drilling in roof complex rock formations[J]. Safety in Coal Mines,2019,50(9):88−91.
    [17] 孙轶伦,潘磊,李海滨,等. 旋转导向近钻头随钻伽马数据成像处理技术[J]. 石油地质与工程,2022,36(1):99−103.. doi: 10.3969/j.issn.1673-8217.2022.01.018

    SUN Yilun,PAN Lei,LI Haibin,et al. Imaging processing technology of gamma data while drilling with rotary steering near bit[J]. Petroleum Geology and Engineering,2022,36(1):99−103.. doi: 10.3969/j.issn.1673-8217.2022.01.018
    [18] 王超. 基于近钻头工程参数测量的井下工况解释方法研究[D]. 北京: 中国石油大学(北京), 2021.

    WANG Chao. Study on the interpretation methods of downhole working conditions based on the near−bit measurement[D]. Beijing: China University of Petroleum (Beijing), 2021.
    [19] YASLAN Y,BICAN B. Empirical mode decomposition based denoising method with support vector regression for time series prediction:A case study for electricity load forecasting[J]. Measurement,2017,103:52−61.. doi: 10.1016/j.measurement.2017.02.007
    [20] VIENS C. Azimuthal gamma imaging and continuous inclination applications to spatial and stratigraphic wellbore placement in the Southern Midland Basin[C]//Unconventional Resources Technology Conference. Denver. Colorado, 2019, 1480−1490.
    [21] ZHENG Majia, LIU Xin, ZHAO Jianping, et al. RSS with near−bit GR imaging assist accurate steer drilling in shale gas project in Sichuan. A fit–for–purpose solutions for shale gas drilling case study[C]//International Petroleum Technology Conference. Beijing, 2019: 1−17.
    [22] 谢夏, 窦修荣, 艾维平, 等. 基于卡尔曼滤波的近钻头动态井斜测量方法[C]//2022国际石油石化技术会议暨新能源及节能技术国际会议论文集. 西安, 2022: 670–681.
    [23] 宋晓健,郑邦贤,谭勇志,等. 基于数据融合的近钻头井眼轨迹参数动态测量方法[J]. 石油钻探技术,2022,50(1):38−44.

    SONG Xiaojian,ZHENG Bangxian,TAN Yongzhi,et al. Dynamic measurement method of near–bit borehole trajectory parameters based on data fusion[J]. Petroleum Drilling Techniques,2022,50(1):38−44.
    [24] SUN Jian,CHEN Mingqiang,LI Qi,et al. A new method for predicting formation lithology while drilling at horizontal well bit[J]. Journal of Petroleum Science and Engineering,2021,196:107955.. doi: 10.1016/j.petrol.2020.107955
    [25] MAO Yanhui,ZHONG Yongmin,GAO Yi,et al. A weak SNR signal extraction method for near–bit attitude parameters based on DWT[J]. Actuators,2022,11(11):323.. doi: 10.3390/act11110323
    [26] WANG Chao,KE Pan,CAO Chenguang,et al. Study on the downhole measurement method of weight on bit with a near–bit measurement tool[J]. Geoenergy Science and Engineering,2023,224:211633.. doi: 10.1016/j.geoen.2023.211633
    [27] 李洪强,王瑞和. 近钻头伽马成像仪测量结果环境校正方法研究[J]. 石油钻探技术,2021,49(3):142−150.

    LI Hongqiang,WANG Ruihe. Research on environmental correction method of measurement results from near–bit gamma imagers[J]. Petroleum Drilling Techniques,2021,49(3):142−150.
    [28] 宋殿光,岳步江,狄帮让,等. 近钻头无线短传理论及信号衰减特性分析[J]. 西安石油大学学报(自然科学版),2020,35(2):98−103.

    SONG Dianguang,YUE Bujiang,DI Bangrang,et al. Theory and signal attenuation characteristics of near−bit wireless short hop[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2020,35(2):98−103.
    [29] 江涛. 井下近钻头测量磁耦合无线短传关键技术研究[D]. 武汉: 华中科技大学, 2021.

    JIANG Tao. Research on key technologies of magnetic coupling wireless short transmission in downhole near−bit measurement[D]. Wuhan: Huazhong University of Science and Technology, 2021.
    [30] TIAN Kaixiao,GANESH R,DETOURNAY E. Influence of bit design on the stability of a rotary drilling system[J]. Nonlinear Dynamics,2020,100:51−75.. doi: 10.1007/s11071-020-05537-2
    [31] LI Peng,JONATHAN L,RICHARD C,et al. New 4.75–in. Ultrasonic LWD technology provides high−resolution caliper and imaging in oil−based and water−based muds[J]. Petrophysics,2019,60(6):712−732.
    [32] 韦海瑞,朱芝同,吴川,等. 近钻头随钻测量系统及其小型化设计关键技术分析[J]. 钻探工程,2022,49(5):156−162.

    WEI Hairui,ZHU Zhitong,WU Chuan,et al. Analysis on current status and key technology of miniaturization design of near−bit MWD systems[J]. Drilling Engineering,2022,49(5):156−162.
    [33] 潘兴明,石倩,路胜杰,等. 小井眼近钻头地质导向仪器的研制及应用[J]. 钻采工艺,2018,41(1):69−71.

    PAN Xingming,SHI Qian,LU Shengjie,et al. Development and application of slimhole near–bit geosteering tool[J]. Drilling & Production Technology,2018,41(1):69−71.
    [34] AL–AWADH A, SANYAL A, KUMAR S, et al. Successful integration of geo–steering and geo–mechanics in real time: Maiden application in Zubair Reservoir, Ratqa Field, northern Kuwait[C]//SPE Kuwait Oil & Gas Show and Conference. Chengdu, 2017: 1−18.
    [35] GREMILLION J, FLOWERS M, TVRDY N, et al. Selection of logging−while−drilling measurements for geosteering of horizontal wells in unconventional reservoirs[C]//Unconventional Resources Technology Conference. Denver, Colorado, 2019: 1−17.
    [36] 张炜,王小宁. 斯伦贝谢公司NeoSteer近钻头旋转导向系统[J]. 测井技术,2021,45(5):463.

    ZHANG Wei,WANG Xiaoning. Schlumberger neosteer near–bit rotary steerable system[J]. Well Logging Technology,2021,45(5):463.
    [37] 林昕,苑仁国,秦磊,等. 地质导向钻井前探技术现状及进展[J]. 特种油气藏,2021,28(2):1−10.. doi: 10.3969/j.issn.1006-6535.2021.02.001

    LIN Xin,YUAN Renguo,QIN Lei,et al. Present situation and progress of geosteering drilling pre–prospecting technology[J]. Special Oil & Gas Reservoirs,2021,28(2):1−10.. doi: 10.3969/j.issn.1006-6535.2021.02.001
    [38] 谷丽东,汪凯斌,赵佳佳. 矿用电磁随钻测量装置及应用[J]. 煤矿安全,2021,52(9):136−141.

    GU Lidong,WANG Kaibin,ZHAO Jiajia. Mine–used electromagnetic MWD system and its application[J]. Safety in Coal Mines,2021,52(9):136−141.
    [39] 李泉新,褚志伟,许超,等. 煤矿井下泥浆脉冲无线随钻测量定向钻进技术[J]. 煤矿安全,2021,52(7):116−120.

    LI Quanxin,CHU Zhiwei,XU Chao,et al. Directional drilling technology with mud pulse wireless MWD in underground coal mine[J]. Safety in Coal Mines,2021,52(7):116−120.
    [40] 张军. 钻孔随钻轨迹测量及三维可视化技术研究[J]. 能源与环保,2020,42(2):54−59.

    ZHANG Jun. Study on borehole while drilling trajectory measurement and three−dimensional visualization technology[J]. China Energy and Environmental Protection,2020,42(2):54−59.
    [41] 杨海,冯选璋,单代伟,等. 基于UKF与互补滤波的随钻IMU井斜动态测量方法[J]. 中国惯性技术学报,2022,30(2):141−147.

    YANG Hai,FENG Xuanzhang,SHAN Daiwei,et al. A well deviation dynamic measurement method of while−drilling IMU based on UKF and complementary filtering[J]. Journal of Chinese Inertial Technology,2022,30(2):141−147.
    [42] 孙东鑫,王科强,贾超,等. 一种小尺寸近钻头方位伽马地质导向工具结构设计[J]. 工程机械,2023,54(4):95−98.

    SUN Dongxin,WANG Keqiang,JIA Chao,et al. Structural design of a small−size near−bit azimuth gamma geosteering tool[J]. Construction Machinery and Equipment,2023,54(4):95−98.
    [43] 杨金显,杨闯. 随钻测量用MEMS陀螺信号稀疏提取[J]. 传感技术学报,2017,30(11):1677−1683.. doi: 10.3969/j.issn.1004-1699.2017.11.011

    YANG Jinxian,YANG Chuang. Signal extraction of MEMS gyro utilized in MWD based on sparse representation[J]. Chinese Journal of Sensors and Actuators,2017,30(11):1677−1683.. doi: 10.3969/j.issn.1004-1699.2017.11.011
    [44] 王涛,陈善秋,王璐,等. 随钻用光纤陀螺惯导系统振动误差建模与辨识[J]. 导航与控制,2018,17(4):81−92.

    WANG Tao,CHEN Shanqiu,WANG Lu,et al. Vibration error model establishment and identification for FOG based on MWD[J]. Navigation and Control,2018,17(4):81−92.
    [45] 高爽,张若愚,李玲玲. 光纤陀螺随钻测斜仪井眼轨迹校正方法研究[J]. 测井技术,2020,44(1):21−26.

    GAO Shuang,ZHANG Ruoyu,LI Lingling. Wellbore trajectory correction method for fiber–optic–gyro MWD inclinometers[J]. Well Logging Technology,2020,44(1):21−26.
    [46] 燕斌. 煤矿井下矿用本安型钻机开孔定向仪的研制[J]. 仪表技术与传感器,2021(5):63−66.. doi: 10.3969/j.issn.1002-1841.2021.05.013

    YAN Bin. Development of orientation instrument for opening of intrinsically safe drilling rig in coal mine[J]. Instrument Technique and Sensor,2021(5):63−66.. doi: 10.3969/j.issn.1002-1841.2021.05.013
    [47] 丛琳,蒋必辞. 煤矿井下复杂环境陀螺随钻测斜方法研究[J]. 中国锰业,2017,35(4):144−146.

    CONG Lin,JIANG Bici. A study on gyroscope MWD inclinometer in complex environment of coal mine[J]. China’s Manganese Industry,2017,35(4):144−146.
    [48] 杨成永. 基于螺杆钻具的旋转导向钻井技术研究[D]. 青岛: 中国石油大学(华东), 2018.

    YANG Chengyong. Research on rotary steerable drilling technology based on downhole motor[D]. Qingdao: China University of Petroleum (East China), 2018.
    [49] 王四一,李泉新,刘建林,等. 冲击螺杆马达研制[J]. 煤田地质与勘探,2019,47(5):225−231.

    WANG Siyi,LI Quanxin,LIU Jianlin,et al. Development of impact screw motor[J]. Coal Geology & Exploration,2019,47(5):225−231.
    [50] 刘建林,王四一,李泉新,等. 矿用小直径等壁厚螺杆马达的研究与应用[J]. 矿业研究与开发,2021,41(1):174−178.

    LIU Jianlin,WANG Siyi,LI Quanxin,et al. Research and application of minor–diameter equal–wall–thickness screw motor used for mining[J]. Mining Research and Development,2021,41(1):174−178.
    [51] 陈沁东,赵建国,杨冬冬. 大直径定向钻孔高效成孔钻进技术应用[J]. 煤炭工程,2021,53(4):49−55.

    CHEN Qindong,ZHAO Jianguo,YANG Dongdong. Application of high−efficiency hole forming in large diameter directional drilling[J]. Coal Engineering,2021,53(4):49−55.
    [52] 陈龙,张冀冠. 煤矿井下钻孔内涡轮发电机的设计[J]. 煤矿机械,2020,41(5):28−30.

    CHEN Long,ZHANG Jiguan. Design of turbine generator in coal mine borehole[J]. Coal Mine Machinery,2020,41(5):28−30.
    [53] 张冀冠,陈龙,高珺. 矿用随钻涡轮发电装置设计[J]. 煤炭工程,2021,53(9):178−181.

    ZHANG Jiguan,CHEN Long,GAO Jun. Design of turbo generator for MWD and LWD in underground coal mine[J]. Coal Engineering,2021,53(9):178−181.
    [54] 方俊,石智军,李泉新,等. 新型煤矿井下定向钻进用有线随钻测量装置[J]. 工矿自动化,2015,41(8):1−5.

    FANG Jun,SHI Zhijun,LI Quanxin,et al. Novel cable measurement while drilling device used for directional drilling in coal mine[J]. Industry and Mine Automation,2015,41(8):1−5.
    [55] 陈龙. 基于直流载波的矿用随钻测量装置研制[J]. 电子设计工程,2020,28(15):157−160.

    CHEN Long. Design of mine MWD device based on DC power line carrier[J]. Electronic Design Engineering,2020,28(15):157−160.
    [56] 高珺. 矿用随钻测量系统中数据传输技术研究[J]. 中州煤炭,2016(4):115−117.

    GAO Jun. Research on data transmission technology in mine−used MWD systems[J]. Zhongzhou Coal,2016(4):115−117.
    [57] 贾梦之,耿艳峰,闫宏亮,等. 高速泥浆脉冲数据传输技术综述[J]. 仪器仪表学报,2018,39(12):160−170.

    JIA Mengzhi,GENG Yanfeng,YAN Hongliang,et al. Review of high–speed mud pulse telemetry technology[J]. Chinese Journal of Scientific Instrument,2018,39(12):160−170.
    [58] 梁耀,李传伟,李安宗,等. 高速泥浆脉冲遥传系统研制及应用[J]. 西安石油大学学报(自然科学版),2019,34(6):93−97.

    LIANG Yao,LI Chuanwei,LI Anzong,et al. Development and application of high−speed mud pulse signal transmission system[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2019,34(6):93−97.
    [59] 鄢志丹,耿艳峰,魏春明,等. 连续波脉冲随钻数据传输系统设计与实现[J]. 电子测量与仪器学报,2018,32(12):85−92.

    YAN Zhidan,GENG Yanfeng,WEI Chunming,et al. Design and implementation of a drilling data transmission system based on the continuous wave pulse[J]. Journal of Electronic Measurement and Instrumentation,2018,32(12):85−92.
    [60] 李泉新,褚志伟. 矿用泥浆脉冲无线随钻测量信号发生装置设计[J]. 工矿自动化,2019,45(8):32−37.

    LI Quanxin,CHU Zhiwei. Design of signal generator for mine–used mud pulse wireless measurement while drilling[J]. Industry and Mine Automation,2019,45(8):32−37.
    [61] 方俊,谷拴成,石智军,等. 煤矿井下随钻测量信号泥浆脉冲传输特性研究与试验[J]. 煤炭学报,2019,44(11):3604−3613.

    FANG Jun,GU Shuancheng,SHI Zhijun,et al. Transmission characteristics of mud pulse measurement signal while drilling in coal mine[J]. Journal of China Coal Society,2019,44(11):3604−3613.
    [62] 连杰,高珺,毕志琴. 矿用电磁波随钻测量系统孔口接收机的设计与应用[J]. 电子测量技术,2020,43(15):182−186.

    LIAN Jie,GAO Jun,BI Zhiqin. The design and application of the receiver outside the hole of EM–MWD[J]. Electronic Measurement Technology,2020,43(15):182−186.
    [63] 连杰,张冀冠. 煤矿井下电磁波无线随钻测量系统的设计与实现[J]. 电子设计工程,2020,28(13):133−136.

    LIAN Jie,ZHANG Jiguan. Design and implementation of EM–MWD instrument in coal mine[J]. Electronic Design Engineering,2020,28(13):133−136.
    [64] 张骋. 煤矿井下EM–MWD信号编码及数据融合方法研究[D]. 武汉: 中国地质大学, 2021.

    ZHANG Cheng. Research on the signal coding and data fusion method of EM−MWD in underground coal mine[D]. Wuhan: China University of Geosciences, 2021.
    [65] 汪凯斌. YSDC矿用电磁波随钻测量系统及在煤矿井下空气钻进中的应用[J]. 煤矿安全,2019,50(7):153−156.

    WANG Kaibin. YSDC mine–used electromagnetic wave measurement while drilling system and its application in air drilling for soft coal seam[J]. Safety in Coal Mines,2019,50(7):153−156.
    [66] 王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望[J]. 工矿自动化,2018,44(11):18−24.. doi: 10.13272/j.issn.1671-251x.17370

    WANG Qingfeng,CHEN Hang. Development and prospect on intelligent drilling technology and equipment for gas drainage[J]. Industry and Mine Automation,2018,44(11):18−24.. doi: 10.13272/j.issn.1671-251x.17370
    [67] 范京道. 智能化无人综采技术[M]. 北京: 煤炭工业出版社, 2017.
    [68] 姚宁平,姚亚峰,方鹏,等. 我国煤矿坑道钻探装备技术进展与展望[J]. 钻探工程,2021,48(1):81−87.

    YAO Ningping,YAO Yafeng,FANG Peng,et al. Advances and outlook of coal mine tunnel drilling equipment and technology[J]. Drilling Engineering,2021,48(1):81−87.
    [69] 郑奕挺,宋红喜. 近钻头伽马响应特征及实验分析[J]. 科学技术与工程,2022,22(10):3932−3940.. doi: 10.3969/j.issn.1671-1815.2022.10.012

    ZHENG Yiting,SONG Hongxi. Characteristics and experimental analysis of gamma response near bit[J]. Science Technology and Engineering,2022,22(10):3932−3940.. doi: 10.3969/j.issn.1671-1815.2022.10.012
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  9
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-08-03
  • 刊出日期:  2023-09-15
  • 网络出版日期:  2023-09-18

目录

    /

    返回文章
    返回