留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间统计的采煤工作面内断层识别方法

冯雅杰 文广超 吴冰洁 胡祖栋

冯雅杰,文广超,吴冰洁,等. 基于空间统计的采煤工作面内断层识别方法[J]. 煤田地质与勘探,2023,51(10):19−26. doi: 10.12363/issn.1001-1986.23.03.0145
引用本文: 冯雅杰,文广超,吴冰洁,等. 基于空间统计的采煤工作面内断层识别方法[J]. 煤田地质与勘探,2023,51(10):19−26. doi: 10.12363/issn.1001-1986.23.03.0145
FENG Yajie,WEN Guangchao,WU Bingjie,et al. A method for identifying faults within mining faces based on spatial statistics[J]. Coal Geology & Exploration,2023,51(10):19−26. doi: 10.12363/issn.1001-1986.23.03.0145
Citation: FENG Yajie,WEN Guangchao,WU Bingjie,et al. A method for identifying faults within mining faces based on spatial statistics[J]. Coal Geology & Exploration,2023,51(10):19−26. doi: 10.12363/issn.1001-1986.23.03.0145

基于空间统计的采煤工作面内断层识别方法

doi: 10.12363/issn.1001-1986.23.03.0145
基金项目: 河南省高等学校重点科研项目(15A170007);河南省科技攻关计划项目(212102310389)
详细信息
    第一作者:

    冯雅杰,1998年生,女,陕西宝鸡人,硕士,从事三维地质方向的研究. E-mail:fengyj395@163.com

    通信作者:

    文广超,1979年生,男,河南驻马店人,博士,教授,硕士生导师,从事地学信息技术方面的教学与研究. E-mail:wengc366@163.com

  • 中图分类号: TD712

A method for identifying faults within mining faces based on spatial statistics

  • 摘要: 采煤工作面内小断层严重影响瓦斯抽采及煤层回采工作,准确识别位置、落差、产状等参数对保障煤矿安全生产意义重大。为有效降低瓦斯涌出量、防止瓦斯爆炸、开发利用瓦斯资源,煤矿施工了大量的瓦斯抽采孔,这为识别煤层内小断层提供了良好的工程条件。相较于传统依赖地质人员专业基础的断层识别方法,基于数学统计和空间拟合的识别模型具有自动化程度高的特点。为此,依据断层两盘高程相异特性和煤层错断前埋深相似性特征,提出了基于瓦斯抽采孔数据,采用聚类分析方法,识别采煤工作面内小断层的思路。对比分析了不同聚类算法的原理和结构,建立了基于K-Means聚类算法的煤层小断层识别模型;设计了小断层识别的关键技术流程:采用手肘法求解最佳聚类簇数,以戴维森堡丁指数和相关系数作为识别精度评价标准,通过异常点识别、断层参数(走向、倾角、落差)计算、断层面拟合、三维可视化等技术手段,实现煤层小断层识别;利用现场采煤工作面底抽巷的部分瓦斯抽采孔数据,识别出落差为3 m和1 m的断层,结合断层实际揭露情况和工作面可视化结果分析。结果表明,现场揭露情况与模型计算结果基本一致,识别方法可用于煤层工作面内断层的识别。

     

  • 图  钻孔平面分布

    Fig. 1  Planar distribution of boreholes

    图  钻孔终孔高程计算剖面

    Fig. 2  Calculation profile for the final hole elevation of a borehole

    图  钻孔分布示意

    Fig. 3  Schematic showing borehole distribution

    图  小断层识别技术流程

    Fig. 4  Technical flow chart of minor fault identification

    图  异常点识别结果

    Fig. 5  Anomalous point identification results

    图  异常点分类

    Fig. 6  Anomalous point classification

    图  拟合走向线

    Fig. 7  Fitted fault strikes

    图  拟合断层面

    Fig. 8  Fitted fault planes

    图  断层三维可视化

    Fig. 9  3D visualization of faults

    图  10  等高线法验证识别断层识别结果

    Fig. 10  Verification of fault identification results using contours

    表  1  聚类算法优缺点对比

    Table  1  Comparison of clustering algorithms

    类型算法优点缺点
    聚类算法K-Means原理简单,聚类效果好,适用于大多数聚类场景最佳聚类簇数k值影响算法的准确度,不好把握
    凝聚层次聚类相似度定义灵活限制少,不需要预先制定聚类数对于高维数据,运算深度和复杂度
    太高
    最佳聚类簇数求解手肘法适用于高维数据样本,数据变化单一,易观察拐点斜率变化有波动时,会出现误判拐点,需要人工解译
    轮廓系数法对数据的分布没有假设凸型的类上,结果存在虚高
    下载: 导出CSV

    表  2  聚类精度评价指标对比

    Table  2  Comparison of clustering accuracy evaluation indices

    评价指标优点缺点
    CH分数计算复杂度低,运行速度快,当簇类密集且分离较好时,分数较高凸型类评价结果偏高,不适合基于密度的聚类评价
    戴维森堡丁
    指数
    综合性评价指标,容易计算采用欧氏距离作为评价因子时,不适合环状聚类评价
    轮廓系数原理简单计算复杂度太高,不适合基于密度的聚类评价
    下载: 导出CSV

    表  3  断层识别评价指标

    Table  3  Fault identification evaluation indices

    评价参数计算公式
    走向误差FT$ {F_{\text{T}}} = {T_{{\text{iden}}}} - {T_{{\text{real}}}} $
    倾角误差FP$ {F_{\text{p}}} = {P_{{\text{iden}}}} - {P_{{\text{real}}}} $
    落差误差FD$ {F_{\text{D}}} = {D_{{\text{iden}}}} - {D_{{\text{real}}}} $
      注:T为走向;P为倾角;D为落差;以iden为下标的参数为拟合断层的参数;以real为下标的参数为真实揭露断层的参数;FTFPFD分别为走向、倾角及落差的误差。
    下载: 导出CSV

    表  4  断层参数对比

    Table  4  Comparison of fault parameters

    分类A研究区B研究区
    走向/(°)倾角/(°)落差/m走向/(°)倾角/(°)落差/m
    真实断层340.045.01.0137.050.03.0
    拟合断层338.541.70.9135.347.32.8
    误差1.53.30.11.72.70.2
    下载: 导出CSV
  • [1] 贾建称,贾茜,桑向阳,等. 我国煤矿地质保障系统建设30年:回顾与展望[J]. 煤田地质与勘探,2023,51(1):86−106.

    JIA Jiancheng,JIA Qian,SANG Xiangyang,et al. Review and prospect:Construction of coal mine geological guarantee system in China during past 30 years[J]. Coal Geology & Exploration,2023,51(1):86−106.
    [2] 陈绍杰,夏治国,郭惟嘉,等. 断层影响下岩体采动灾变响应研究现状与展望[J]. 煤炭科学技术,2018,46(1):20−27.

    CHEN Shaojie,XIA Zhiguo,GUO Weijia,et al. Research status and prospect of mining catastrophic response of rock mass under the influence of fault[J]. Coal Science and Technology,2018,46(1):20−27.
    [3] 孟庆彬,韩立军,齐彪,等. 复杂地质条件下巷道过断层关键技术研究及应用[J]. 采矿与安全工程学报,2017,34(2):199−207.

    MENG Qingbin,HAN Lijun,QI Biao,et al. Study and application of key technology for roadway crossing faults under complex geological conditions[J]. Journal of Mining & Safety Engineering,2017,34(2):199−207.
    [4] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1−5.

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1−5.
    [5] 蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39−46.

    LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39−46.
    [6] 赵建峰. 物探技术在探测煤矿地质中的应用研究[J]. 矿业装备,2021(6):130−131.

    ZHAO Jianfeng. Application research of geophysical prospecting technology in detection of coal mine geology[J]. Mining Equipment,2021(6):130−131.
    [7] 孙振宇,彭苏萍,邹冠贵. 基于SVM算法的地震小断层自动识别[J]. 煤炭学报,2017,42(11):2945−2952.

    SUN Zhenyu,PENG Suping,ZOU Guangui. Automatic identification of small faults based on SVM and seismic data[J]. Journal of China Coal Society,2017,42(11):2945−2952.
    [8] AN Yu,GUO Jiulin,YE Qing,et al. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets[J]. Computers & Geosciences,2021,153:104776.
    [9] CUNHA A,POCHET A,LOPES H,et al. Seismic fault detection in real data using transfer learning from a convolutional neural network pre–trained with synthetic seismic data[J]. Computers & Geosciences,2020,135:104344.
    [10] 路鹏飞,杜文龙,李丽,等. 基于VNet深度学习架构的低序级断层智能识别方法[J]. 石油地球物理勘探,2022,57(6):1276−1286.

    LU Pengfei,DU Wenlong,LI Li,et al. Intelligent recognition method of low–grade faults based on VNet deep learning architecture[J]. Oil Geophysical Prospecting,2022,57(6):1276−1286.
    [11] 丰超, 潘建国, 李闯, 等. 基于深度神经网络的断层高分辨率识别方法[J/OL]. 地球科学, 2022: 1–15 [2023-07-12]. http: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1640. 036. html.

    FENG Chao, PAN Jianguo, LI Chuang, et al. Fault high–resolution recognition method based on deep neural network[J/OL]. Earth Science, 2022: 1−15 [2023-07-12]. http: //kns. cnki. net/kcms/detail/42. 1874. P. 20220808. 1640. 036. html.
    [12] 常德宽,雍学善,王一惠,等. 基于深度卷积神经网络的地震数据断层识别方法[J]. 石油地球物理勘探,2021,56(1):1−8.

    CHANG Dekuan,YONG Xueshan,WANG Yihui,et al. Seismic fault interpretation based on deep convolutional neural networks[J]. Oil Geophysical Prospecting,2021,56(1):1−8.
    [13] 丁昌伟,王新,陈同俊,等. 贝叶斯优化的XGBoost在小断层地震解释中的应用[J]. 煤炭学报,2023,48(6):2530−2539.

    DING Changwei,WANG Xin,CHEN Tongjun,et al. Application of Bayesian optimized XGBoost in seismic interpretation of small–scale faults[J]. Journal of China Coal Society,2023,48(6):2530−2539.
    [14] 何涛,刘乃豪,吴帮玉,等. 基于ResU–Net的三维断层识别方法及应用[J]. 工程数学学报,2023,40(1):1−19.

    HE Tao,LIU Naihao,WU Bangyu,et al. ResU–Net based three–dimensional fault identification method and application[J]. Chinese Journal of Engineering Mathematics,2023,40(1):1−19.
    [15] 李士辉. 掘进巷道断层识别方法及处理措施[J]. 山西冶金,2021,44(3):267−268.

    LI Shihui. Fault identification method and treatment measures of driving roadway[J]. Shanxi Metallurgy,2021,44(3):267−268.
    [16] 李婷婷,侯思宇,马世忠,等. 断层识别方法综述及研究进展[J]. 地球物理学进展,2018,33(4):1507−1514.

    LI Tingting,HOU Siyu,MA Shizhong,et al. Overview and research progress of fault identification method[J]. Progress in Geophysics,2018,33(4):1507−1514.
    [17] 程韦华. 矿井掘进工作面小断层识别及处理[J]. 矿业装备,2022(2):54−55.

    CHENG Weihua. Identification and treatment of small faults in mine driving face[J]. Mining Equipment,2022(2):54−55.
    [18] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
    [19] 崔洪庆,薛洪来. 利用瓦斯抽采钻孔探测煤层小断层[J]. 煤炭科学技术,2014,42(2):34−37.

    CUI Hongqing,XUE Honglai. Detection on small faults in coal seam based on gas drainage boreholes[J]. Coal Science and Technology,2014,42(2):34−37.
    [20] 薛洪来,温哲. 煤矿隐伏小断层的瓦斯抽采钻孔探测方法[J]. 煤田地质与勘探,2021,49(3):69−77.

    XUE Honglai,WEN Zhe. The concealed small faults detection based on gas drainage boreholes along and cross the coal seam[J]. Coal Geology & Exploration,2021,49(3):69−77.
    [21] 杨俊闯,赵超. K–Means聚类算法研究综述[J]. 计算机工程与应用,2019,55(23):7−14.

    YANG Junchuang,ZHAO Chao. Survey on K–Means clustering algorithm[J]. Computer Engineering and Applications,2019,55(23):7−14.
    [22] 李德鹏,谢昆,范乐宾,等. 基于地质模型正演的小断层识别[J]. 石化技术,2022,29(11):122−124.

    LI Depeng,XIE Kun,FAN Lebin,et al. Small fault identification by seismic forward based on geological model[J]. Petrochemical Industry Technology,2022,29(11):122−124.
    [23] 于会臻. 联合专家解释样本及正演样本的三维断层自动识别方法[J]. 油气地质与采收率,2022,29(6):58−66.

    YU Huizhen. Automatic 3D fault identification method driven by data from expert interpretation samples and forward modeling samples[J]. Petroleum Geology and Recovery Efficiency,2022,29(6):58−66.
    [24] 谢雄刚,傅贵,张江石. 用Geostructure软件模拟预测断层的可行性[J]. 煤炭学报,2006,31(3):301−304.. doi: 10.3321/j.issn:0253-9993.2006.03.007

    XIE Xionggang,FU Gui,ZHANG Jiangshi. Feasibility in simulating and predicting faults with Geostructure software[J]. Journal of China Coal Society,2006,31(3):301−304.. doi: 10.3321/j.issn:0253-9993.2006.03.007
    [25] 崔洪庆,丁志伟. 利用瓦斯抽采钻孔资料和Matlab预测隐伏小断层[J]. 煤田地质与勘探,2015,43(2):24−27.

    CUI Hongqing,DING Zhiwei. Concealed small fault forecasting based on Matlab and coal seam gas drainage borehole[J]. Coal Geology & Exploration,2015,43(2):24−27.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  8
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-18
  • 修回日期:  2023-06-28
  • 刊出日期:  2023-10-25
  • 网络出版日期:  2023-07-20

目录

    /

    返回文章
    返回