留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准南阜康区块煤层后生生物成因H2S的发现与成因机制

闫佩佩 苏现波 邹成龙 赵伟仲 汪露飞 伏海蛟

闫佩佩,苏现波,邹成龙,等. 准南阜康区块煤层后生生物成因H2S的发现与成因机制[J]. 煤田地质与勘探,2023,51(10):52−61. doi: 10.12363/issn.1001-1986.23.02.0105
引用本文: 闫佩佩,苏现波,邹成龙,等. 准南阜康区块煤层后生生物成因H2S的发现与成因机制[J]. 煤田地质与勘探,2023,51(10):52−61. doi: 10.12363/issn.1001-1986.23.02.0105
YAN Peipei,SU Xianbo,ZOU Chenglong,et al. Discovery and generation mechanisms of epigenetic biogenic H2S from coal seams in the Fukang block, southern Junggar Basin, China[J]. Coal Geology & Exploration,2023,51(10):52−61. doi: 10.12363/issn.1001-1986.23.02.0105
Citation: YAN Peipei,SU Xianbo,ZOU Chenglong,et al. Discovery and generation mechanisms of epigenetic biogenic H2S from coal seams in the Fukang block, southern Junggar Basin, China[J]. Coal Geology & Exploration,2023,51(10):52−61. doi: 10.12363/issn.1001-1986.23.02.0105

准南阜康区块煤层后生生物成因H2S的发现与成因机制

doi: 10.12363/issn.1001-1986.23.02.0105
基金项目: 国家自然科学基金重点项目(42230804);国家自然科学基金面上项目(42072193)
详细信息
    第一作者:

    闫佩佩,1997年生,女,山西晋城人,硕士,研究方向为煤层气生物工程. E-mail:1348722963@qq.com

    通信作者:

    邹成龙,1988年生,男,新疆乌鲁木齐人,工程师,研究方向为煤层气工程. E-mail:zcl@cleanseed.com.cn

  • 中图分类号: P618.11

Discovery and generation mechanisms of epigenetic biogenic H2S from coal seams in the Fukang block, southern Junggar Basin, China

  • 摘要: 随着排采的进行准南东段阜康区块煤层气井产出的煤层气中H2S浓度呈现逐渐增加的趋势,对安全生产构成严重威胁。基于煤层气勘探开发资料,结合实验室厌氧发酵实验,对该区块排采阶段煤层H2S的异常原因进行初步探讨。煤层气勘探阶段含气量测试结果表明,煤层气原始气体中H2S含量低,最高仅为2.152×10−6;排采初期并未出现H2S浓度异常现象,但随着排采的进行,部分井出现异常,如13号井在排采7 a后H2S含量异常增加,高达700×10−6。灰色关联分析表明,H2S的浓度与煤层气井的产水量和水质密切相关,当地下水的补给带来充足的营养物质供给菌群代谢时,就会促进H2S的产出。由该区煤和排采水作为发酵基液构建的厌氧发酵系统表明,H2S的产量与发酵液中SO4 2−含量成反比、与HCO3 含量成正比;CH4的产气高峰滞后于H2S,且累计生成量显著低于H2S,而由该区的煤与蒸馏水作为发酵基液构建的厌氧发酵系统则以产CH4为主,仅生成微量的H2S,说明H2S是硫酸盐还原菌以CH4为电子供体还原SO4 2−生成的;发酵液中小分子有机酸含量的不断减少说明硫酸盐还原菌同样利用了有机酸为电子供体还原SO4 2−生成H2S。因此,现场生产资料和实验室厌氧发酵结果表明该区H2S是由煤层水中的SO4 2−被硫酸盐还原菌还原生成。这种排采阶段生成的生物气与以往人们认为的原生和次生生物气都不相同,将其称为后生生物气,其中的H2S称为后生生物H2S。排采过程中后生生物气的生成进一步说明人工干预下的煤层气生物工程实施的可行性。

     

  • 图  13号井排采曲线

    Fig. 1  CBM production curves of the No.13 CBM well

    图  H2S浓度与各影响因素间的灰色关联雷达

    Fig. 2  Radar diagram of grey relation between H2S concentration and various influencing factors

    图  不同厌氧发酵系统中CH4和H2S的阶段产气量与累计产气量

    Fig. 3  Stage-based and cumulative production of CH4 and H2S in different anaerobic fermentation systems

    图  厌氧发酵过程中关键离子含量与pH的变化

    Fig. 4  Changes in key ion contents and pH in the anaerobic fermentation process

    图  厌氧发酵过程中H2S总量与SO4 2−、HCO3 离子含量的线性关系

    Fig. 5  Linear relationships between the total H2S production and the SO4 2− and HCO3 contents in the anaerobic fermentation process

    图  厌氧发酵过程中小分子有机酸的变化

    Fig. 6  Changes in low-molecular-weight organic acids in the anaerobic fermentation process

    图  厌氧发酵系统中细菌群落和古菌群落的微生物组成

    Fig. 7  Microbial compositions of the bacterial community and the archaeal community in an anaerobic fermentation system

    图  厌氧发酵系统中CH4与H2S成因机制

    Fig. 8  Generation mechanisms of CH4 and H2S in different anaerobic fermentation systems

    图  新疆阜康地区煤层气井排采过程中H2S的后生生物成因

    Fig. 9  Schematic showing the epigenetic biogenesis of H2S during the CBM production of a CBM well in the Fukang block, Xinjiang

    表  1  CS井区煤层气井含气量和H2S含量

    Table  1  Gas content and H2S content of CBM wells in the CS well block

    样品编号H2S质量
    浓度/(mg·m−3)
    煤层含气
    量/(m3·t−1)
    H2S含量/

    (10−6 m3·t−1)
    10.53014.775.539
    20.40113.733.899
    32.59015.6128.598
    40.14716.371.702
    50.81615.078.702
    61.57215.0016.680
    72.7096.4612.377
    82.4296.5711.287
    93.04217.0036.584
    100.92515.8010.333
    下载: 导出CSV

    表  2  13号煤层气井排采数据

    Table  2  CBM production data of the No.13 CBM well

    排采时间/d平均产气量/
    (m3·d−1)
    平均产水量/
    (m3·d−1)
    井底流压/
    MPa
    H2S平均
    含量/
    (10−6 m3·t−1)
    2 660—2 7081 713.635.840.05224.65
    2 708—2 7301 221.566.120.10221.50
    2 730—2 736(停泵)167.181.670.3764.42
    2 736—2 7501 073.009.250.0510.28
    2 750—2 7751 553.417.890.04234.36
    2 775—2 7851 563.116.790.04484.36
    下载: 导出CSV

    表  3  H2S浓度异常井位的煤层水水质分析

    Table  3  Coal seam water quality analysis of wells with abnormal H2S concentrations

    井号离子质量浓度/(mg·L−1)
    K+或Na+Ca2+Mg2+Fe2+Ba2+ClFSO4 2−SO3 2−S2O3 2−HSS2−CO3 2−HCO3 CODTDS
    112629.032.2211.002938.120.04980.03.2222.400.814509369.598954.4444.076440
    124589.930.511.910.263.523567.690.08588.02.0533.600.703207699.257289.8051.219570
    131994.807.0311.820.020.022360.970.08784.03.0144.803.868007794.707384.9339.065570
    144284.764.759.030.055.153951.500.03614.02.8639.203.3733110085.459667.8548.6511330
    151875.803.906.830.050.132492.140.15750.92.4633.603.685344454.024055.6628.636420
    下载: 导出CSV

    表  4  H2S浓度与各影响因素间的灰色关联系数

    Table  4  Grey relation coefficients between H2S concentration and various influencing factors

    井号ClSO4 2−SO3 2−S2O3 2−HSS2−CO3 2−HCO3 K++Na+CODTDS日产水量
    11号0.640.620.610.720.870.700.610.610.650.640.680.96
    14号0.640.820.760.760.700.840.630.630.600.640.610.65
    13号0.450.500.480.510.530.540.450.450.450.4540.450.69
    15号0.910.850.900.800.760.810.980.990.980.940.900.89
    相关度0.660.700.690.700.720.720.670.670.670.670.660.80
    下载: 导出CSV

    表  5  煤质分析

    Table  5  Coal quality analysis

    煤样Rran/%工业分析w/%形态硫分析w/%
    MadAadVdafFCadSt,dSs,dSp,dSo,d
    FK0.680.9829.4131.9237.690.5090.0120.1830.314
      注:Mad为空气干燥基煤水分;Aad为空气干燥基煤灰分;Vdaf为干燥无灰基煤挥发分;FCad为空气干燥基固定碳;Rran为镜质体随机反射率;St,d为空气干燥基煤全硫;Ss,d为空气干燥基煤硫酸盐硫;Sp,d为空气干燥基煤硫化铁硫;So,d为空气干燥基煤有机硫。
    下载: 导出CSV
  • [1] TAN Bo,SHAO Zhuangzhuang,WEI Hongyi,et al. Status of research on hydrogen sulphide gas in Chinese mines[J]. Environmental Science and Pollution Research International,2020,27(3):2502−2521.. doi: 10.1007/s11356-019-07058-x
    [2] 邓奇根,温洁洁,刘明举,等. 基于泉 (井)水特性的准噶尔盆地东南缘煤矿硫化氢成因研究[J]. 河南理工大学学报 (自然科学版),2018,37(1):8−14.

    DENG Qigen,WEN Jiejie,LIU Mingju,et al. Study on the formation of hydrogen sulfide in coal mines of southeastern margin of Junggar Basin based on the characteristics of spring (well) water[J]. Journal of Henan Polytechnic University (Natural Science),2018,37(1):8−14.
    [3] MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings–old and new insights[J]. Sedimentary Geology, 2001, 140(1/2): 143–175.
    [4] HUANG Liuke,WU Yuliang,FAN Kaixiang,et al. Formation and transport mechanism of hydrogen sulfide in coal seam[J]. Materials Science Forum,2016,4280(863):149−153.
    [5] 刘明举,李国旗,HANI M,等. 煤矿硫化氢气体成因类型探讨[J]. 煤炭学报,2011,36(6):978−983.

    LIU Mingju,LI Guoqi,HANI M,et al. Genesis modes discussion of H2S gas in coal mines[J]. Journal of China Coal Society,2011,36(6):978−983.
    [6] YANG Shengbo,WANG Haichao,FU Xuehai,et al. Hydrogen sulfide occurrence states in China’s coal seams[J]. Energy Exploration & Exploitation,2022,40(1):17−37.
    [7] 张泽源,侯昕悦,王世东,等. 保德煤矿奥陶纪灰岩水H2S形成机理及防治技术[J]. 煤矿安全,2020,51(5):203−207.

    ZHANG Zeyuan,HOU Xinyue,WANG Shidong,et al. Formation mechanism and prevention technology of H2S in Ordovician limestone water in Baode Coal Mine[J]. Safety in Coal Mines,2020,51(5):203−207.
    [8] CAI Chunfang,LI Hongxia,LI Kaikai,et al. Thermochemical sulfate reduction in sedimentary basins and beyond:A review[J]. Chemical Geology,2022,607:121018.. doi: 10.1016/j.chemgeo.2022.121018
    [9] LIU Mingju,DENG Qigen,ZHAO Fajun,et al. Origin of hydrogen sulfide in coal seams in China[J]. Safety Science,2012,50(4):668−673.. doi: 10.1016/j.ssci.2011.08.054
    [10] 刘小辉. 阜康矿区H2S异常煤矿地质控制因素分析[D]. 乌鲁木齐: 新疆大学, 2014.

    LIU Xiaohui. Analysis of geological control factors H2S abnormal mine in Fukang Mine[D]. Urumqi: Xinjiang University, 2014.
    [11] 李洋冰,曾磊,胡维强,等. 保德地区煤层气地球化学特征及成因探讨[J]. 煤田地质与勘探,2021,49(2):133−141.

    LI Yangbing,ZENG Lei,HU Weiqiang,et al. Geochemical characteristics and genesis of coalbed methane in Baode area[J]. Coal Geology & Exploration,2021,49(2):133−141.
    [12] NEAL A L,DOHNALKOVA A,MCCREADY D,et al. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate−reducing bacteria[J]. Geochimica et Cosmochimica Acta,2001,65(2):223−235.. doi: 10.1016/S0016-7037(00)00537-8
    [13] PETER K, RENATE S, UDO J, et al. Hydrogenophaga defluvii sp. nov. and hydrogenophaga atypica sp. nov. isolated from activated sludge[J]. International Journal of Systematic & Evolutionary Microbiology, 2005, 55(Pt 1): 341–344.
    [14] 谢炳辉. 大型灌区地下水水质分析: 以泾惠渠灌区为例[D]. 西安: 长安大学, 2013.

    XIE Binghui. Research on groundwater quality of large–scale irrigation: A case of Jinghuiqu irrigation district[D]. Xi’an: Chang’an University, 2013.
    [15] FANG Heting,OBEROI A S,HE Zhiqing,et al. Ciprofloxacin−degrading paraclostridium sp. isolated from sulfate−reducing bacteria−enriched sludge:Optimization and mechanism[J]. Water Research,2021,191:116808.. doi: 10.1016/j.watres.2021.116808
    [16] ZHAO Zhiqiang,LI Yang,QUAN Xie,et al. Towards engineering application:Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research,2017,115:266−277.. doi: 10.1016/j.watres.2017.02.067
    [17] CHENG Shaoan,XING Defeng,CALL D F,et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology,2009,43(10):3953−3958.
    [18] 弓凯仪,郭红光,张益瑄,等. 复配高效菌群厌氧降解煤产甲烷实验研究[J]. 矿业安全与环保,2023,50(3):12−17.. doi: 10.19835/j.issn.1008-4495.2023.03.003

    GONG Kaiyi,GUO Hongguang,ZHANG Yixuan,et al. Experimental study on methane generation from anaerobic degradation of coal by compound high-efficiency flora[J]. Mining Safety & Environmental Protection,2023,50(3):12−17.. doi: 10.19835/j.issn.1008-4495.2023.03.003
    [19] JABARI L,GANNOUN H,CAYOL J L,et al. Macellibacteroides fermentans gen. nov.,sp. nov.,a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters[J]. International Journal of Systematic and Evolutionary Microbiology,2012,62(Pt10):2522−2527.
    [20] MUYZER G,STAMS A J M. The ecology and biotechnology of sulphate−reducing bacteria[J]. Nature Reviews Microbiology,2008,6(6):441−454.. doi: 10.1038/nrmicro1892
    [21] 王爱宽,秦勇. 生物成因煤层气实验研究现状与进展[J]. 煤田地质与勘探,2010,38(5):23−27.

    WANG Aikuan,QIN Yong. Research status and progress of experimental study on biogenic coalbed methane[J]. Coal Geology & Exploration,2010,38(5):23−27.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  4
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-04-27
  • 录用日期:  2023-10-25
  • 刊出日期:  2023-10-25
  • 网络出版日期:  2023-10-07

目录

    /

    返回文章
    返回