准南阜康区块煤层后生生物成因H2S的发现与成因机制

闫佩佩, 苏现波, 邹成龙, 赵伟仲, 汪露飞, 伏海蛟

闫佩佩,苏现波,邹成龙,等. 准南阜康区块煤层后生生物成因H2S的发现与成因机制[J]. 煤田地质与勘探,2023,51(10):52−61. DOI: 10.12363/issn.1001-1986.23.02.0105
引用本文: 闫佩佩,苏现波,邹成龙,等. 准南阜康区块煤层后生生物成因H2S的发现与成因机制[J]. 煤田地质与勘探,2023,51(10):52−61. DOI: 10.12363/issn.1001-1986.23.02.0105
YAN Peipei,SU Xianbo,ZOU Chenglong,et al. Discovery and generation mechanisms of epigenetic biogenic H2S from coal seams in the Fukang block, southern Junggar Basin, China[J]. Coal Geology & Exploration,2023,51(10):52−61. DOI: 10.12363/issn.1001-1986.23.02.0105
Citation: YAN Peipei,SU Xianbo,ZOU Chenglong,et al. Discovery and generation mechanisms of epigenetic biogenic H2S from coal seams in the Fukang block, southern Junggar Basin, China[J]. Coal Geology & Exploration,2023,51(10):52−61. DOI: 10.12363/issn.1001-1986.23.02.0105

 

准南阜康区块煤层后生生物成因H2S的发现与成因机制

基金项目: 国家自然科学基金重点项目(42230804);国家自然科学基金面上项目(42072193)
详细信息
    作者简介:

    闫佩佩,1997年生,女,山西晋城人,硕士,研究方向为煤层气生物工程. E-mail:1348722963@qq.com

    通讯作者:

    邹成龙,1988年生,男,新疆乌鲁木齐人,工程师,研究方向为煤层气工程. E-mail:zcl@cleanseed.com.cn

  • 中图分类号: P618.11

Discovery and generation mechanisms of epigenetic biogenic H2S from coal seams in the Fukang block, southern Junggar Basin, China

  • 摘要:

    随着排采的进行准南东段阜康区块煤层气井产出的煤层气中H2S浓度呈现逐渐增加的趋势,对安全生产构成严重威胁。基于煤层气勘探开发资料,结合实验室厌氧发酵实验,对该区块排采阶段煤层H2S的异常原因进行初步探讨。煤层气勘探阶段含气量测试结果表明,煤层气原始气体中H2S含量低,最高仅为2.152×10−6;排采初期并未出现H2S浓度异常现象,但随着排采的进行,部分井出现异常,如13号井在排采7 a后H2S含量异常增加,高达700×10−6。灰色关联分析表明,H2S的浓度与煤层气井的产水量和水质密切相关,当地下水的补给带来充足的营养物质供给菌群代谢时,就会促进H2S的产出。由该区煤和排采水作为发酵基液构建的厌氧发酵系统表明,H2S的产量与发酵液中SO4 2−含量成反比、与HCO3 含量成正比;CH4的产气高峰滞后于H2S,且累计生成量显著低于H2S,而由该区的煤与蒸馏水作为发酵基液构建的厌氧发酵系统则以产CH4为主,仅生成微量的H2S,说明H2S是硫酸盐还原菌以CH4为电子供体还原SO4 2−生成的;发酵液中小分子有机酸含量的不断减少说明硫酸盐还原菌同样利用了有机酸为电子供体还原SO4 2−生成H2S。因此,现场生产资料和实验室厌氧发酵结果表明该区H2S是由煤层水中的SO4 2−被硫酸盐还原菌还原生成。这种排采阶段生成的生物气与以往人们认为的原生和次生生物气都不相同,将其称为后生生物气,其中的H2S称为后生生物H2S。排采过程中后生生物气的生成进一步说明人工干预下的煤层气生物工程实施的可行性。

    Abstract:

    In the Fukang block located in the eastern part of the southern Junggar Basin, coalbed methane (CBM) from CBM wells exhibits a gradually increasing H2S concentration in the process of CBM production via water drainage, severely threatening production safety. Based on the CBM exploration and extraction data, as well as the anaerobic fermentation experiments, this study preliminarily investigated the causes of abnormal H2S concentrations during the CBM production in the Fukang block. As indicated by the gas content test in the CBM exploration stage, the original CBM showed a low H2S concentration of only up to 2.152×10−6. Abnormal H2S concentrations did not occur at the beginning of CBM production. However, some wells exhibited abnormal H2S concentrations as CBM production proceeded. For example, the No.13 CBM well showed an abnormal increase in H2S concentration after seven years of gas production, with the H2S concentration reaching 700×10−6. The grey relational analysis reveals that the H2S concentration is closely related to the yield and quality of water in CBM wells. H2S generation can be promoted under a sufficient supply of nutrients from groundwater for microbial metabolism. As shown by the anaerobic fermentation system constructed with the coal and water produced from the Fukang block as the anaerobic broth, the H2S production was inversely and positively proportional to the SO4 2− and HCO3 contents in the fermentation broth, respectively. In this system, CH4 showed a lagging gas production peak and significantly lower cumulative gas production compared to H2S. However, the anaerobic fermentation system constructed with coal from the block and distilled water as the fermentation broth primarily produced CH4, with only a small amount of H2S. These findings indicate that H2S was generated from the reduction of SO4 2− by sulfate-reducing bacteria (SRB) using CH4 as electron donors. The gradually decreasing content of low-molecular-weight organic acids in the fermentation broth indicates that SRB also reduced SO4 2− using organic acids as electron donors. Therefore, the field production data and the anaerobic fermentation experimental results indicate that H2S in the Fukang block was generated from the reduction of SO4 2− in the coal seam water by SRB. The biogenic gas generated in the CBM production stage, which is different from primary and secondary biogenic gases, is referred to as the epigenetic biogenic gas, in which the H2S is called epigenetic biogenic H2S. The generation of epigenetic biogenic gas during the CBM production further corroborates the feasibility of implementing CBM bioengineering under human intervention.

  • 煤层气井排采的目标是持续稳产和高产[1-2],因此在特定产量条件下稳产时间的定量预测就是实现排采过程中排采参数合理优化的前提。周敏等[3]认为气井稳产时间影响因素较多,因此采用了多元线性回归方法建立了川东地区气井稳产时间的计算方法;洪舒娜等[4]基于压裂气井不稳定渗流方程计算得到了压裂气井稳产时间预测方法;史海东等[5]以物质平衡方程和气井产能公式为基础,结合气藏工程分析及数值模拟方法,建立了异常高压气藏稳产期预测模型。但煤层气主要以吸附态存在,而常规天然气藏可以认为是定容积气藏[6],煤层气井与常规天然气井存在明显的差别。目前关于煤层气井稳产时间定量预测的研究相对较少。彭本虎等[7]认为煤层气井见套压前、憋套压、初始产气、产气上升4个阶段的定量划分依据已经掌握,但稳产阶段的定量划分依据仍无法判断,提出了一种稳定产气量的确定方法;贾慧敏等[8]对沁水盆地樊庄区块递减规律进行了研究,明确了递减点概念及其影响因素,但未对稳产时间进行研究;由于稳产时间由储层物性条件和排采控制方法共同决定,如果不人为调气保持稳产,其产量波动很大,因此李贵红等[9]将日产气量大于2 000 m3作为沁水盆地潘庄区块煤层气井进入稳产阶段的判别标准,这并非严格意义上的稳产期,其产量处于上升或下降状态,因此整体上煤层气井稳产期预测方法并不成熟。鉴于公式推导计算量大,需要参数较多等问题,本文拟从现场生产数据动态预测的角度提出简便的煤层气井稳产时间定量预测方法,以期提高煤层气井排采效率和配产准确率。

    樊庄−郑庄区块位于沁水盆地东南部,主力煤层气层为二叠系山西组3号煤和石炭–二叠系太原组15号煤[10-11],最大镜质体反射率分布在3.15%~4.26%,属于高煤阶煤。樊庄区块埋深370~800 m,整体上从南向北埋深逐渐增大(图1a);郑庄区块埋深400~1 200 m,整体上从西南到东北埋深增大(图1b),尤其郑庄北部埋深较大,平均埋深为1 010 m[12]。郑庄区块3号煤平均含气量为21.7 m3/t,含气饱和度70%~78%,15号煤平均含气量为21.7 m3/t,含气饱和度72%~84%[13];樊庄区块含气量整体较高,为11~25 m3/t,含气饱和度76%~93%[14]。樊庄区块3号煤Langmuir体积为32.7~43.2 m3/t,平均为37.7 m3/t,吸附能力较强,Langmuir压力为2.0~3.8 MPa,平均2.4 MPa;郑庄区块3号煤Langmuir体积为25.5~44.9 m3/t,平均为36.4 m3/t,吸附能力与樊庄相当,Langmuir压力为1.8~2.9 MPa,平均2.8 MPa。樊庄区块3号煤深侧向电阻率为1 528~17 885 Ω·m,郑庄区块为173~16 390 Ω·m,各区块煤体结构差异较大。

    图  1  沁水盆地樊庄−郑庄区块构造
    Figure  1.  Structure map of Fanzhuang and Zhengzhuang Block of Qinshui Basin

    樊庄区块2006年开始开发,目前有直井1 656口、裸眼多分支水平井34口、筛管水平井80口、套管压裂水平井83口,持续开发16年;郑庄区块2011年开始规模开发,目前有直井893口、裸眼多分支水平井38口、筛管水平井8口、套管压裂水平井95口,持续开发11年,整体具备分析煤层气稳产规律的排采数据基础。本文在研究了樊庄–郑庄区块上百口排采井的生产曲线后,选取樊庄–郑庄区块排采连续、数据完整、不同井型的16口井数据为代表,其中,7口直井分布在郑庄区块,4口L型筛管水平井分布在樊庄南部,5口L型套管压裂水平井两个区块均有分布。

    通过对樊庄−郑庄大量排采曲线研究发现,一般煤层气井全生命周期可以划分为排水段、解吸段、提产段、稳产段及递减段[13,15](图2),其中稳产段的持续时间即为煤层气井稳产时间,在相同条件下,稳产时间越长、累产气量越高。大量煤层气井生产数据表明(图2a图2d),煤层气井主要依靠持续降低井底流压实现稳产,当井底流压降至最低(一般为系统管压)时,煤层气井产量开始持续下降,稳产阶段结束,如图2中Q2、Q4、Q5、Q7等4口井的排采曲线所示;反之煤层气井的井底流压没有降至最低前,都可以通过持续降压实现稳产,如图2e图2f中Q10和Q14井的排采曲线所示。

    图  2  煤层气井典型生产曲线
    Figure  2.  Typical production curves for CBM wells in Fanzhuang and Zhengzhuang Block

    为了简要说明上述观点,以均质储层平面径向流公式计算煤层气井产气阶段产量,则可表示为:

    $$ q = \frac{{kh(p_{\text{e}}^{\text{2}} - p_{t{\text{,wf}}}^{\text{2}})}}{{{1\;424}\overline \mu \overline Z T\left(\ln\dfrac{{{r_{\text{e}}}}}{{{r_{\text{w}}}}} + S\right)}} $$ (1)

    式中:q为产气量,m3/d;k为渗透率,10−3 μm2h为煤层厚度,m;pe为储层压力,MPa;pt,wf为累积稳产时间为t时煤层气井井底流压,MPa;$ \overline \mu $为平均气体黏度,mPa·s;$ \overline Z $为平均气体压缩因子;T为煤层温度,K;re为泄流半径,m;rw为井筒半径,m;S为表皮系数。

    根据式(1),如果井底流压(pt,wf)保持稳定,随着排采的进行,储层压力(pe)不变,泄流半径re增大,煤层气井产量持续下降,因此,煤层气井依靠持续降低井底流压实现稳产,而稳产是排采调控的结果,当井底流压降至与集气管线压力相等时,井底流压无法下降,则产量必然下降,稳产阶段被迫结束;同时,当停止人为降压时,稳产阶段人为结束。一般在排采过程中尽可能追求长期稳产,因此,煤层气井稳产时间定义为从开始稳产时井底流压值降至集气管线压力所用时间。

    统计分析樊庄–郑庄区块直井、L型筛管水平井和L型套管压裂水平井3类井型中处于稳产阶段的煤层气井的累积稳产时间与井底流压关系(图3),结果表明,煤层气井的累积稳产时间与井底流压二者关系满足以下经验公式:

    图  3  不同井型煤层气井稳产时间与井底流压关系
    Figure  3.  The relationship between stable-production period and bottom-hole flowing pressure for different types of CBM wells
    $$ {p_{_{t{\text{,wf}}}}} = {p_{_0}}{\exp( - }bt) $$ (2)

    式中:p0为煤层气井开始稳产时刻的井底流压,MPa;t为累积稳产时间,d;b为稳产流压损耗系数,d−1

    由于煤层气单井与煤层气地面集气管网相连接[16],因此当煤层气单井井底流压降至集气系统压力后不能再降低,樊庄−郑庄区块集气系统压力一般在0.03~0.15 MPa。当排采后期煤层气单井井底流压等于集气系统压力时,依据式(2)可得煤层气井最终稳产时间计算公式为:

    $$ {t_{\text{z}}} = \frac{1}{b}{\text{ln}} {\frac{{{p_{_0}}}}{{{p_{\text{g}}}}}} $$ (3)

    式中:tz为煤层气井最终稳产时间,d;pg为单井所属集气系统的压力,MPa。

    根据图1,得到16口井开始稳产时刻的井底流压和稳产流压损耗系数,并根据实际情况确定单井所属的集气系统的压力,根据式(3)计算得到稳产时间,并与实际的稳产时间进行对比(表1),验证式(3)的可靠性。

    表  1  16口井稳产时间预测结果与实际稳产时间对比
    Table  1.  Comparison between predicted stable-production period by Eq.(3) and Eq.(4) and the real stable-production period from 16 wells
    井型井号b/d−1p0/MPapgpr/MPa预测稳产时间/d实际稳产时间/d误差/%备注
    压裂直井Q10.0051.147 10.173823751.87人为结束稳产
    Q20.0061.106 80.11385400−3.75降至集气系统压力
    Q30.0070.970 00.142772616.13人为结束稳产
    Q40.0050.939 10.17342343−0.29人为结束稳产
    Q50.0060.956 80.12346357−3.08人为结束稳产
    Q60.0071.133 00.113333252.46降至集气系统压力
    Q70.0010.757 30.1416881720−1.86人为结束稳产
    L型筛管水平井Q80.0010.711 20.38627640−2.03处于稳产段
    Q90.0010.825 70.33917963−4.78处于稳产段
    Q100.0020.317 50.163433352.39人为结束稳产
    Q110.0010.620 10.2210369598.03处于稳产段
    L型套管压裂水平井Q120.0050.524 90.152512442.87人为结束稳产
    Q130.0042.001 10.44379403−5.96处于稳产段
    Q140.0031.329 40.42384405−5.19处于稳产段
    Q150.0041.036 70.6137147−6.80处于稳产段
    Q160.0030.669 20.19420458−8.30处于稳产段
    注:表中误差计算公式为(预测稳产时间−实际稳产时间)/实际稳产时间×100%。
    下载: 导出CSV 
    | 显示表格

    需进一步说明的是,由于煤层气井排采受人为控制,在实际排采过程中许多井的井底流压未降至集气系统压力就人为结束了稳产阶段,即这些井并未充分释放稳产能力,因此单井实际稳产时间还取决于人为结束稳产阶段时的井底流压。为验证式(3)正确性,必须考虑人为结束稳产阶段时的井底流压pr,则可用下式预测稳产时间tr

    $$ \begin{split} \\ {t_{\text{r}}} = \frac{1}{b}\ln \frac{{{p_0}}}{{{p_{\text{r}}}}} \end{split} $$ (4)

    对于目前还处于稳产阶段的井,将目前的流压假设为人为结束稳产阶段的井底流压,并以目前时间为截止点计算实际稳产时间,仍然采用式(4)预测稳产时间。

    表1可知,应用式(3)或基于其变形得到的式(4)预测得到的稳产时间与实际统计的单井稳产时间非常接近,相对误差较小,分布在−8.30%~8.03%;且式(3)对压裂直井、L型筛管水平井和L型套管压裂水平井3种井型均适用,表明式(3)可以准确预测煤层气井的稳产时间。

    假设煤层气井开始稳产时刻的井底流压为1 MPa,根据式(2)分别模拟稳产流压损耗系数分别为0.001、0.002、0.003、0.005、0.01、0.015 d−1时煤层气井的稳产时间,结果表明稳产流压损耗系数越大稳产时间越短,且流压损耗系数微小的变化都会引起稳产时间极大的变化(图4)。

    图  4  稳产流压损耗系数对稳产时间影响
    Figure  4.  Effects of bottom-hole-flowing pressure loss coefficient in stable-production stage on the stable-production period

    稳产流压损耗系数受地质条件和排采控制方法双重控制。典型井解吸压力与稳产流压损耗系数间关系(图5a)表明,解吸压力越高、稳产流压损耗系数越小,二者呈明显的线性关系,拟合优度达到0.866 8。这是由于解吸压力越高,含气量越高,气量供给越充足[17-18];另一方面解吸压力越高,含气饱和度越高,解吸速率越快[19-20]。典型井提产阶段数据表明,井底流压与排采时间同样呈负指数关系,与式(2)形式相似:

    图  5  稳产流压损耗系数主要影响因素
    Figure  5.  Main factors affecting the bottom-hole-flowing pressure loss coefficient
    $$ {p_{_{t{\text{,wf}}}}} = {p_{\text{d}}}{{\exp( - }}c{t_{\text{t}}}{\text{)}} $$ (5)

    式中:tt为煤层气井提产时间,d;pd为单井解吸压力,MPa;c为提产流压损耗系数,d−1

    利用式(5)对典型井提产数据拟合得到提产流压损耗系数,并将其与稳产流压损耗系数对比分析(图5b),发现稳产流压损耗系数与提产流压损耗系数成正相关关系,提产流压损耗系数越大,稳产流压损耗系数越大,稳产时间越短。而提产期流压损耗系数主要受提产速度影响,在其他情况相同条件下,提产速度越快,提产期流压损耗系数越大,根据图5b拟合得到的经验公式,提产流压损耗系数为0.006 5 d−1时,稳产流压损耗系数约为0.005 d−1,稳产时间可达到800 d以上(图4),因此在提产阶段通过调节提产速度将提产流压损耗系数控制在0.006 5 d−1以下利于长期稳产。

    假设稳产流压损耗系数为0.003 d−1,根据式(2)分别模拟开始稳产时刻井底流压分别为0.5、1.0、1.5 MPa时煤层气井的稳产时间,结果表明,开始稳产时刻井底流压越高、稳产时间越长(图6),为了实现长期稳产,需高流压稳产。

    图  6  稳产时刻井底流压对稳产时间的影响
    Figure  6.  Effects of bottom-hole-flowing-pressure value at the begin of stable production stage on the stable-production period

    对同一口井而言,产气量随着井底流压降低而增加(图7),则稳产气量越高,开始稳产时刻的井底流压越低,则稳产时间越短。为了便于横向对比,去除不同稳产气量对稳产流压损耗系数的影响,定义单位稳产气量流压损耗系数为bq,其计算公式为:

    图  7  Q17井煤层气产量与井底流压关系
    Figure  7.  Relationship between daily production and bottom-hole-flowing pressure for well Q17
    $$ {b_{_{\text{q}}}} = \frac{{{q_{_0}}}}{{{q_{_{\rm{w}}}}}} $$ (6)

    式中:bq为单位稳产气量流压损耗系数,d−1qw为稳产气量,m3/d;q0为对比气量,本文取值为1000,m3/d。因此,本文中的bq可称为千方稳产气量流压损耗系数。

    依据式(6)计算典型井的千方稳产气量流压损耗系数,并建立其与稳产气量的散点图(图8),结果表明,稳产气量越高,千方稳产气量流压损耗系数越低,则稳产时间越长,与上述同一口井情况不同。这表明对不同井而言,稳产气量高,稳产时间不一定短,需要合理确定其稳产气量,才能获得长期高产稳产。

    图  8  不同煤层气井稳产气量与千方气稳产流压损耗系数间关系
    Figure  8.  Relationship between stable gas rate and bottom-hole-flowing pressure loss coefficient per thousand cubic meters gas in stable-production period

    本文提出的稳产时间预测方法,不仅可以预测煤层气井稳产时间,还可以确定煤层气井合理稳产气量。以Q17井为例,其生产曲线如图9a所示,当Q17井日产气量达到5000 m3时开始稳产,稳产550 d得到第①阶段稳产数据,利用式(2)对稳产期间井底流压与时间数据进行拟合(图9b),得到煤层气井开始稳产时刻的井底流压p0为0.878 4 MPa和稳产流压损耗系数b为0.001 d−1,假设该井人为结束稳产时井底流压pr为0.1 MPa,则将相关参数代入式(4)计算得到预测稳产时间为2 173 d,则稳产段累积产气量1 086.5×104 m3

    图  9  Q17井生产曲线及不同阶段稳产时间预测
    Figure  9.  Production curves and stable-production period prediction for different stage for well Q17

    为了验证该井是否具备进一步的提产能力,将产气量提高至5 500 m3/d,稳产190 d得到第②阶段稳产数据,同样利用式(2)对稳产期间井底流压与稳产时间数据进行拟合(图9c),得到开始稳产时刻的井底流压p0为0.420 9 MPa、稳产流压损耗系数b为0.001 d−1,同样,假设该井人为结束稳产时井底压力pr为0.1 MPa,将上述参数代入式(4),预测稳产时间为1 437 d,则该井稳产量为5 500 m3/d时,稳产阶段的累积产气量为1 065.4×104 m3,则与持续稳产5 000 m3/d相比,累产气量减少近20×104 m3,因此,对于该井来说5 000 m3/d为合理稳产气量。

    a. 煤层气井主要依靠持续降低井底流压保持稳产,稳产阶段是排采调控的结果,当井底流压降至集气管线压力或人为停止降压时,稳产阶段结束,因此煤层气井稳产时间等于井底流压从开始稳产时的压力值降至集气管线压力或者人为结束稳产阶段时流压值所用的时间。

    b. 本文提出的经验公式$ {p_{_{t{\text{,wf}}}}} = {p_{_0}}{{\exp( - }}bt) $能够有效表征直井、L型筛管水平井、L型套管压裂水平井稳产阶段累积稳产时间与井底流压关系;且本文提出的最终稳产时间计算公式能够较准确预测上述3种井型煤层气井的稳产时间,且误差较小,仅为−8.30%~8.03%。

    c. 稳产流压损耗系数越大稳产时间越短,稳产流压损耗系数受地质条件和排采控制方法双重控制;解吸压力越高、提产流压损耗系数越小,稳产流压损耗系数越小,稳产时间越长,排采过程中,提产流压损耗系数应控制在0.006 5 d−1以下,利于长期稳产;开始稳产时刻井底流压越高、稳产时间越长,应该高压提产、高压稳产。

    d. 对同一口井,产气量随着井底流压降低而增加,但对不同的井,稳产气量高,稳产时间不一定短,需确定合理的稳产气量,而利用本文提出的稳产时间确定方法可以实现不同稳产气量条件下稳产段累产气量计算,并确定合理的稳产气量。

  • 图  1   13号井排采曲线

    Fig.  1   CBM production curves of the No.13 CBM well

    图  2   H2S浓度与各影响因素间的灰色关联雷达

    Fig.  2   Radar diagram of grey relation between H2S concentration and various influencing factors

    图  3   不同厌氧发酵系统中CH4和H2S的阶段产气量与累计产气量

    Fig.  3   Stage-based and cumulative production of CH4 and H2S in different anaerobic fermentation systems

    图  4   厌氧发酵过程中关键离子含量与pH的变化

    Fig.  4   Changes in key ion contents and pH in the anaerobic fermentation process

    图  5   厌氧发酵过程中H2S总量与SO4 2−、HCO3 离子含量的线性关系

    Fig.  5   Linear relationships between the total H2S production and the SO4 2− and HCO3 contents in the anaerobic fermentation process

    图  6   厌氧发酵过程中小分子有机酸的变化

    Fig.  6   Changes in low-molecular-weight organic acids in the anaerobic fermentation process

    图  7   厌氧发酵系统中细菌群落和古菌群落的微生物组成

    Fig.  7   Microbial compositions of the bacterial community and the archaeal community in an anaerobic fermentation system

    图  8   厌氧发酵系统中CH4与H2S成因机制

    Fig.  8   Generation mechanisms of CH4 and H2S in different anaerobic fermentation systems

    图  9   新疆阜康地区煤层气井排采过程中H2S的后生生物成因

    Fig.  9   Schematic showing the epigenetic biogenesis of H2S during the CBM production of a CBM well in the Fukang block, Xinjiang

    表  1   CS井区煤层气井含气量和H2S含量

    Table  1   Gas content and H2S content of CBM wells in the CS well block

    样品编号H2S质量
    浓度/(mg·m−3)
    煤层含气
    量/(m3·t−1)
    H2S含量/

    (10−6 m3·t−1)
    10.53014.775.539
    20.40113.733.899
    32.59015.6128.598
    40.14716.371.702
    50.81615.078.702
    61.57215.0016.680
    72.7096.4612.377
    82.4296.5711.287
    93.04217.0036.584
    100.92515.8010.333
    下载: 导出CSV

    表  2   13号煤层气井排采数据

    Table  2   CBM production data of the No.13 CBM well

    排采时间/d平均产气量/
    (m3·d−1)
    平均产水量/
    (m3·d−1)
    井底流压/
    MPa
    H2S平均
    含量/
    (10−6 m3·t−1)
    2 660—2 7081 713.635.840.05224.65
    2 708—2 7301 221.566.120.10221.50
    2 730—2 736(停泵)167.181.670.3764.42
    2 736—2 7501 073.009.250.0510.28
    2 750—2 7751 553.417.890.04234.36
    2 775—2 7851 563.116.790.04484.36
    下载: 导出CSV

    表  3   H2S浓度异常井位的煤层水水质分析

    Table  3   Coal seam water quality analysis of wells with abnormal H2S concentrations

    井号离子质量浓度/(mg·L−1)
    K+或Na+Ca2+Mg2+Fe2+Ba2+ClFSO4 2−SO3 2−S2O3 2−HSS2−CO3 2−HCO3 CODTDS
    112629.032.2211.002938.120.04980.03.2222.400.814509369.598954.4444.076440
    124589.930.511.910.263.523567.690.08588.02.0533.600.703207699.257289.8051.219570
    131994.807.0311.820.020.022360.970.08784.03.0144.803.868007794.707384.9339.065570
    144284.764.759.030.055.153951.500.03614.02.8639.203.3733110085.459667.8548.6511330
    151875.803.906.830.050.132492.140.15750.92.4633.603.685344454.024055.6628.636420
    下载: 导出CSV

    表  4   H2S浓度与各影响因素间的灰色关联系数

    Table  4   Grey relation coefficients between H2S concentration and various influencing factors

    井号ClSO4 2−SO3 2−S2O3 2−HSS2−CO3 2−HCO3 K++Na+CODTDS日产水量
    11号0.640.620.610.720.870.700.610.610.650.640.680.96
    14号0.640.820.760.760.700.840.630.630.600.640.610.65
    13号0.450.500.480.510.530.540.450.450.450.4540.450.69
    15号0.910.850.900.800.760.810.980.990.980.940.900.89
    相关度0.660.700.690.700.720.720.670.670.670.670.660.80
    下载: 导出CSV

    表  5   煤质分析

    Table  5   Coal quality analysis

    煤样Rran/%工业分析w/%形态硫分析w/%
    MadAadVdafFCadSt,dSs,dSp,dSo,d
    FK0.680.9829.4131.9237.690.5090.0120.1830.314
      注:Mad为空气干燥基煤水分;Aad为空气干燥基煤灰分;Vdaf为干燥无灰基煤挥发分;FCad为空气干燥基固定碳;Rran为镜质体随机反射率;St,d为空气干燥基煤全硫;Ss,d为空气干燥基煤硫酸盐硫;Sp,d为空气干燥基煤硫化铁硫;So,d为空气干燥基煤有机硫。
    下载: 导出CSV
  • [1]

    TAN Bo,SHAO Zhuangzhuang,WEI Hongyi,et al. Status of research on hydrogen sulphide gas in Chinese mines[J]. Environmental Science and Pollution Research International,2020,27(3):2502−2521. DOI: 10.1007/s11356-019-07058-x

    [2] 邓奇根,温洁洁,刘明举,等. 基于泉 (井)水特性的准噶尔盆地东南缘煤矿硫化氢成因研究[J]. 河南理工大学学报 (自然科学版),2018,37(1):8−14.

    DENG Qigen,WEN Jiejie,LIU Mingju,et al. Study on the formation of hydrogen sulfide in coal mines of southeastern margin of Junggar Basin based on the characteristics of spring (well) water[J]. Journal of Henan Polytechnic University (Natural Science),2018,37(1):8−14.

    [3]

    MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings–old and new insights[J]. Sedimentary Geology, 2001, 140(1/2): 143–175.

    [4]

    HUANG Liuke,WU Yuliang,FAN Kaixiang,et al. Formation and transport mechanism of hydrogen sulfide in coal seam[J]. Materials Science Forum,2016,4280(863):149−153.

    [5] 刘明举,李国旗,HANI M,等. 煤矿硫化氢气体成因类型探讨[J]. 煤炭学报,2011,36(6):978−983.

    LIU Mingju,LI Guoqi,HANI M,et al. Genesis modes discussion of H2S gas in coal mines[J]. Journal of China Coal Society,2011,36(6):978−983.

    [6]

    YANG Shengbo,WANG Haichao,FU Xuehai,et al. Hydrogen sulfide occurrence states in China’s coal seams[J]. Energy Exploration & Exploitation,2022,40(1):17−37.

    [7] 张泽源,侯昕悦,王世东,等. 保德煤矿奥陶纪灰岩水H2S形成机理及防治技术[J]. 煤矿安全,2020,51(5):203−207.

    ZHANG Zeyuan,HOU Xinyue,WANG Shidong,et al. Formation mechanism and prevention technology of H2S in Ordovician limestone water in Baode Coal Mine[J]. Safety in Coal Mines,2020,51(5):203−207.

    [8]

    CAI Chunfang,LI Hongxia,LI Kaikai,et al. Thermochemical sulfate reduction in sedimentary basins and beyond:A review[J]. Chemical Geology,2022,607:121018. DOI: 10.1016/j.chemgeo.2022.121018

    [9]

    LIU Mingju,DENG Qigen,ZHAO Fajun,et al. Origin of hydrogen sulfide in coal seams in China[J]. Safety Science,2012,50(4):668−673. DOI: 10.1016/j.ssci.2011.08.054

    [10] 刘小辉. 阜康矿区H2S异常煤矿地质控制因素分析[D]. 乌鲁木齐: 新疆大学, 2014.

    LIU Xiaohui. Analysis of geological control factors H2S abnormal mine in Fukang Mine[D]. Urumqi: Xinjiang University, 2014.

    [11] 李洋冰,曾磊,胡维强,等. 保德地区煤层气地球化学特征及成因探讨[J]. 煤田地质与勘探,2021,49(2):133−141.

    LI Yangbing,ZENG Lei,HU Weiqiang,et al. Geochemical characteristics and genesis of coalbed methane in Baode area[J]. Coal Geology & Exploration,2021,49(2):133−141.

    [12]

    NEAL A L,DOHNALKOVA A,MCCREADY D,et al. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate−reducing bacteria[J]. Geochimica et Cosmochimica Acta,2001,65(2):223−235. DOI: 10.1016/S0016-7037(00)00537-8

    [13]

    PETER K, RENATE S, UDO J, et al. Hydrogenophaga defluvii sp. nov. and hydrogenophaga atypica sp. nov. isolated from activated sludge[J]. International Journal of Systematic & Evolutionary Microbiology, 2005, 55(Pt 1): 341–344.

    [14] 谢炳辉. 大型灌区地下水水质分析: 以泾惠渠灌区为例[D]. 西安: 长安大学, 2013.

    XIE Binghui. Research on groundwater quality of large–scale irrigation: A case of Jinghuiqu irrigation district[D]. Xi’an: Chang’an University, 2013.

    [15]

    FANG Heting,OBEROI A S,HE Zhiqing,et al. Ciprofloxacin−degrading paraclostridium sp. isolated from sulfate−reducing bacteria−enriched sludge:Optimization and mechanism[J]. Water Research,2021,191:116808. DOI: 10.1016/j.watres.2021.116808

    [16]

    ZHAO Zhiqiang,LI Yang,QUAN Xie,et al. Towards engineering application:Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research,2017,115:266−277. DOI: 10.1016/j.watres.2017.02.067

    [17]

    CHENG Shaoan,XING Defeng,CALL D F,et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology,2009,43(10):3953−3958.

    [18] 弓凯仪,郭红光,张益瑄,等. 复配高效菌群厌氧降解煤产甲烷实验研究[J]. 矿业安全与环保,2023,50(3):12−17. DOI: 10.19835/j.issn.1008-4495.2023.03.003

    GONG Kaiyi,GUO Hongguang,ZHANG Yixuan,et al. Experimental study on methane generation from anaerobic degradation of coal by compound high-efficiency flora[J]. Mining Safety & Environmental Protection,2023,50(3):12−17. DOI: 10.19835/j.issn.1008-4495.2023.03.003

    [19]

    JABARI L,GANNOUN H,CAYOL J L,et al. Macellibacteroides fermentans gen. nov.,sp. nov.,a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters[J]. International Journal of Systematic and Evolutionary Microbiology,2012,62(Pt10):2522−2527.

    [20]

    MUYZER G,STAMS A J M. The ecology and biotechnology of sulphate−reducing bacteria[J]. Nature Reviews Microbiology,2008,6(6):441−454. DOI: 10.1038/nrmicro1892

    [21] 王爱宽,秦勇. 生物成因煤层气实验研究现状与进展[J]. 煤田地质与勘探,2010,38(5):23−27.

    WANG Aikuan,QIN Yong. Research status and progress of experimental study on biogenic coalbed methane[J]. Coal Geology & Exploration,2010,38(5):23−27.

图(9)  /  表(5)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  7
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-26
  • 修回日期:  2023-04-26
  • 录用日期:  2023-10-24
  • 网络出版日期:  2023-10-06
  • 刊出日期:  2023-10-24

目录

/

返回文章
返回