留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同变质煤的瓦斯膨胀能演化特征及其突出预测启示

刘高峰 李宝林 张震 刘欢 关文博 司念

刘高峰,李宝林,张震,等. 不同变质煤的瓦斯膨胀能演化特征及其突出预测启示[J]. 煤田地质与勘探,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103
引用本文: 刘高峰,李宝林,张震,等. 不同变质煤的瓦斯膨胀能演化特征及其突出预测启示[J]. 煤田地质与勘探,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103
LIU Gaofeng,LI Baolin,ZHANG Zhen,et al. Gas expansion energy of coals with different metamorphic degrees: Evolutionary characteristics and their implications for the outburst prediction[J]. Coal Geology & Exploration,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103
Citation: LIU Gaofeng,LI Baolin,ZHANG Zhen,et al. Gas expansion energy of coals with different metamorphic degrees: Evolutionary characteristics and their implications for the outburst prediction[J]. Coal Geology & Exploration,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103

不同变质煤的瓦斯膨胀能演化特征及其突出预测启示

doi: 10.12363/issn.1001-1986.23.02.0103
基金项目: 国家科技重大专项任务(2016ZX05067-006-002);国家自然科学基金项目(42230814,42372204)
详细信息
    第一作者:

    刘高峰,1982年生,男,河南沁阳人,博士,副教授、博士生导师,从事瓦斯地质与煤层气开发等研究工作.E-mail:liugaofeng82@163.com

  • 中图分类号: P618.11

Gas expansion energy of coals with different metamorphic degrees: Evolutionary characteristics and their implications for the outburst prediction

  • 摘要: 为了提高煤与瓦斯突出(突出)预测的准确性,选取6种不同变质程度的煤样,开展高压压汞实验、等温吸附实验,计算瓦斯膨胀能,分析不同变质程度煤的瓦斯膨胀能演化特征及其与突出预测指标间的关系。结果表明:不同变质程度煤的孔隙结构与吸附性的差异,导致煤体所含的瓦斯膨胀能存在差异。煤的总瓦斯膨胀能与吸附瓦斯膨胀能随瓦斯压力的升高而增大,增加趋势逐渐变缓;相同瓦斯压力下,煤的变质程度越高,总瓦斯膨胀能与吸附瓦斯膨胀能越大。煤的游离瓦斯膨胀能随瓦斯压力升高呈指数增大;相同瓦斯压力下,游离瓦斯膨胀能随单位质量煤体孔隙体积的增加而增大。当Rmax>1.6%,0.74 MPa对应的游离瓦斯膨胀能与初始释放瓦斯膨胀能突出临界指标42.98 mJ/g基本相等,进一步验证了游离瓦斯在突出触发阶段起主要作用,也为突出预测临界压力值采用0.74 MPa的合理性提供了科学依据。当Rmax为0.6%~1.6%时,0.74 MPa对应的游离瓦斯膨胀能小于42.98 mJ/g,夸大了煤体所具备的突出潜能,会加大防突工作量。当Rmax<0.6%,0.74 MPa对应的游离瓦斯膨胀能大于42.98 mJ/g,这会导致低指标突出灾害的发生。因此,在进行煤与瓦斯突出预测和防治时,应充分考虑煤的变质程度对突出的影响,研究可为突出预测提供新的科学依据和方法借鉴。

     

  • 图  吸附孔、渗流孔孔隙结构参数变化

    Fig. 1  Variations in the structural parameters of adsorption and seepage pores

    图  不同变质煤的等温吸附曲线

    Fig. 2  Isothermal adsorption curves of coals with different metamorphic degrees

    图  Langmuir吸附常数变化

    Fig. 3  Variations in the Langmuir adsorption constant

    图  不同变质程度煤的瓦斯膨胀能变化

    Fig. 4  Variations in gas expansion energy of coals with different metamorphic degrees

    图  8 m3/t对应瓦斯膨胀能随煤变质程度的变化

    Fig. 5  Gas expansion energy under gas content of 8 m3/t vs. coals’ metamorphic degree

    图  0.74 MPa对应瓦斯膨胀能随煤阶的变化

    Fig. 6  Gas expansion energy under gas pressure of 0.74 MPa vs. coal rank

    表  1  煤样基本参数

    Table  1  Basic parameters of coal samples

    煤种工业分析w/%Rmax /%孔隙率/
    %
    孔隙体积 /
    (cm3·g−1)
    MadAdVdaf
    褐煤1.696.4536.330.387.250.057
    气煤2.358.1534.570.863.420.024
    肥煤2.439.3830.451.273.310.022
    焦煤0.6111.1418.591.602.170.033
    贫煤1.012.1210.702.395.000.034
    无烟煤1.266.317.713.492.890.032
      注:Mad为空气干燥基水分,Ad为干燥基灰分,Vdaf为干燥无灰基挥发分,Rmax为最大镜质体反射率。
    下载: 导出CSV

    表  2  不同变质煤的Langmuir吸附常数

    Table  2  Langmuir adsorption constant of coals with different metamorphic degrees

    煤样镜质体反射率Rmax/%Langmuir体积
    VL/(cm3·g−1)
    Langmuir压力
    pL/MPa
    褐煤0.3811.024.83
    气煤0.8616.344.18
    肥煤1.2721.633.74
    焦煤1.6026.863.96
    贫煤2.3929.834.38
    无烟煤3.4933.195.00
    下载: 导出CSV

    表  3  0.74 MPa与8 m3/t下不同变质程度煤的瓦斯膨胀能

    Table  3  Gas expansion energy of coals with different metamorphic degrees under gas pressure of 0.74 MPa and gas content of 8 m3/t

    煤样Rmax/%8 m3/t0.74 MPa
    W/
    (mJ·g−1)
    W/
    42.98
    W1/
    (mJ·g−1)
    W1/
    42.98
    W2/
    (mJ·g−1)
    W2/
    42.98
    W/
    (mJ·g−1)
    W
    /42.98
    W1/
    (mJ·g−1)
    W1/
    42.98
    W2/
    (mJ·g−1)
    W2/
    42.98
    褐煤0.383 82088.882613.3060.801206.7028.08 3508.14277.596.4672.411.68
    气煤0.863 27076.082809.6665.37460.3410.7151011.87478.9911.1431.010.72
    肥煤1.272 38655.511935.3345.03450.6710.4971916.73690.2716.0628.730.67
    焦煤1.602 33054.211934.9545.02395.059.1985019.78807.9518.8042.050.98
    贫煤2.392 33054.211995.1946.42334.817.7987020.24826.5319.2343.471.01
    无烟煤3.492 38055.372092.5548.69287.456.6986020.01819.3619.0640.640.95
      注:W/42.98、W1/42.98和W2/42.98分别为总瓦斯膨胀能W、吸附瓦斯膨胀能W1和游离瓦斯膨胀能W2与初始释放瓦斯膨胀能突出临界指标42.98 mJ/g的比值。
    下载: 导出CSV
  • [1] CHENG Yuanping,PAN Zhejun. Reservoir properties of Chinese tectonic coal:A review[J]. Fuel,2020,260:116350.. doi: 10.1016/j.fuel.2019.116350
    [2] 李希建,林柏泉. 煤与瓦斯突出机理研究现状及分析[J]. 煤田地质与勘探,2010,38(1):7−13.

    LI Xijian,LIN Baiquan. Status of research and analysis on coal and gas outburst mechanism[J]. Coal Geology & Exploration,2010,38(1):7−13.
    [3] HE Xueqiu,CHEN Wenxue,NIE Baisheng,et al. Classification technique for danger classes of coal and gas outburst in deep coal mines[J]. Safety Science,2010,48(2):173−178.. doi: 10.1016/j.ssci.2009.07.007
    [4] 郭德勇,胡杰,王彦凯. 煤与瓦斯突出层次–可拓预警技术及应用[J]. 中国安全科学学报,2017,27(1):88−92.

    GUO Deyong,HU Jie,WANG Yankai. Coal and gas outburst early–warning technology and application based on AHP and extension theory[J]. China Safety Science Journal,2017,27(1):88−92.
    [5] 张子戌,刘高峰,吕闰生,等. 基于模糊模式识别的煤与瓦斯突出区域预测[J]. 煤炭学报,2007,32(6):592−595.

    ZHANG Zixu,LIU Gaofeng,LYU Runsheng,et al. Regional forecast of coal and gas burst based on fuzzy pattern recognition[J]. Journal of China Coal Society,2007,32(6):592−595.
    [6] 徐刚,李树刚,马瑞峰. 顺煤层剪切带煤与瓦斯突出机理分析[J]. 煤田地质与勘探,2014,42(4):16−20.

    XU Gang,LI Shugang,MA Ruifeng. Analysis on coal and gas outburst mechanism of beding shear zone[J]. Coal Geology & Exploration,2014,42(4):16−20.
    [7] HODOT BB. Outburst of coal and coalbed gas (Chinese Translation)[M]. Beijing: China Coal Industry Press, 1966.
    [8] 王刚,武猛猛,王海洋,等. 基于能量平衡模型的煤与瓦斯突出影响因素的灵敏度分析[J]. 岩石力学与工程学报,2015,34(2):238−248.

    WANG Gang,WU Mengmeng,WANG Haiyang,et al. Sensitivity analysis of factors affecting coal and gas outburst based on a energy equilibrium model[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(2):238−248.
    [9] 吕闰生,金毅,刘高峰. 中高煤阶煤储层水力压裂消突能量耗散特性[J]. 采矿与安全工程学报,2017,34(5):1015−1020.

    LYU Runsheng,JIN Yi,LIU Gaofeng. Energy dissipation characteristics of eliminating outburst using hydraulic fracture for medium–high rank coal reservoirs[J]. Journal of Mining & Safety Engineering,2017,34(5):1015−1020.
    [10] 王刚,程卫民,谢军,等. 瓦斯含量在突出过程中的作用分析[J]. 煤炭学报,2011,36(3):429−434.

    WANG Gang,CHENG Weimin,XIE Jun,et al. Analysis of the gas content in the coal and gas outburst[J]. Journal of China Coal Society,2011,36(3):429−434.
    [11] 何学秋,周广来,刘贞堂. 含瓦斯煤突出的能量耗散过程及非接触预测[J]. 煤炭科学技术,1993,21(12):18−21.

    HE Xueqiu,ZHOU Guanglai,LIU Zhentang. Energy releasing process and non–contact prediction of coal and gas outburst[J]. Coal Science and Technology,1993,21(12):18−21.
    [12] WANG Zhenyang,CHENG Yuanping,WANG Liang,et al. Analysis of pulverized tectonic coal gas expansion energy in underground mines and its influence on the environment[J]. Environmental Science and Pollution Research,2019,27(2):1508−1520.
    [13] 王汉鹏,张冰,袁亮,等. 吸附瓦斯含量对煤与瓦斯突出的影响与能量分析[J]. 岩石力学与工程学报,2017,36(10):2449−2456.

    WANG Hanpeng,ZHANG Bing,YUAN Liang,et al. Influence of adsorption gas content on coal and gas outburst and energy analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(10):2449−2456.
    [14] JIN Kan,CHENG Yuanping,REN Ting,et al. Experimental investigation on the formation and transport mechanism of outburst coal–gas flow:Implications for the role of gas desorption in the development stage of outburst[J]. International Journal of Coal Geology,2018,194:45−58.. doi: 10.1016/j.coal.2018.05.012
    [15] TAO Shu,CHEN Shida,PAN Zhejun. Current status,challenges,and policy suggestions for coalbed methane industry development in China:A review[J]. Energy Science & Engineering,2019,7(4):1059−1074.
    [16] REN Jiangang,SONG Zhimin,LI Bing,et al. Structure feature and evolution mechanism of pores in different metamorphic degrees and deformation coals[J]. Fuel,2021,283:119292.. doi: 10.1016/j.fuel.2020.119292
    [17] 刘高峰,张子戌,张小东,等. 气肥煤与焦煤的孔隙分布规律及其吸附–解吸特征[J]. 岩石力学与工程学报,2009,28(8):1587−1592.

    LIU Gaofeng,ZHANG Zixu,ZHANG Xiaodong,et al. Pore distribution regularity and absorption–desorption characteristics of gas coal and coking coal[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1587−1592.
    [18] 魏风清,史广山,张铁岗. 基于瓦斯膨胀能的煤与瓦斯突出预测指标研究[J]. 煤炭学报,2010,35(Sup.1):95−99.

    WEI Fengqing,SHI Guangshan,ZHANG Tiegang. Study on coal and gas outburst prediction indexes base on gas expansion energy[J]. Journal of China Coal Society,2010,35(Sup.1):95−99.
    [19] LIU Aihua,FU Xuehai,WANG Kexin,et al. Investigation of coalbed methane potential in low–rank coal reservoirs–Free and soluble gas contents[J]. Fuel,2013,112:14−22.. doi: 10.1016/j.fuel.2013.05.032
    [20] MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36−81.. doi: 10.1016/j.coal.2012.05.011
    [21] YAO Yanbin,LIU Dameng,TANG Dazhen,et al. Fractal characterization of adsorption–pores of coals from North China:An investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology,2008,73(1):27−42.. doi: 10.1016/j.coal.2007.07.003
    [22] YAO Yanbin,LIU Dameng,TANG Dazhen,et al. Fractal characterization of seepage–pores of coals from China:An investigation on permeability of coals[J]. Computers & Geosciences,2009,35(6):1159−1166.
    [23] 钟玲文,张慧,员争荣,等. 煤的比表面积、孔体积及其对煤吸附能力的影响[J]. 煤田地质与勘探,2002,30(3):26−29.

    ZHONG Lingwen,ZHANG Hui,YUAN Zhengrong,et al. Influence of specific pore area and pore volume of coal on adsorption capacity[J]. Coal Geology & Exploration,2002,30(3):26−29.
    [24] 钟玲文,张新民. 煤的吸附能力与其煤化程度和煤岩组成间的关系[J]. 煤田地质与勘探,1990(4):29−36.

    ZHONG Lingwen,ZHANG Xinmin. The relationship between the adsorption capacity of coal and its degree of metamorphism and different macrolithotype[J]. Coal Geology & Exploration,1990(4):29−36.
    [25] CAI Yidong,LI Qian,LIU Dameng,et al. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption[J]. International Journal of Coal Geology,2018,200:199−212.. doi: 10.1016/j.coal.2018.11.007
    [26] 赵兴龙,汤达祯,许浩,等. 煤变质作用对煤储层孔隙系统发育的影响[J]. 煤炭学报,2010,35(9):1506−1511.

    ZHAO Xinglong,TANG Dazhen,XU Hao,et al. Effect of coal metamorphic process on pore system of coal reservoirs[J]. Journal of China Coal Society,2010,35(9):1506−1511.
    [27] 国家煤矿安全监察局. 防治煤与瓦斯突出细则[M]. 北京: 煤炭工业出版社, 2019.
    [28] 齐黎明,陈学习,程五一. 瓦斯膨胀能与瓦斯压力和含量的关系[J]. 煤炭学报,2010,35(增刊1):105−108.

    QI Liming,CHEN Xuexi,CHENG Wuyi. Relationship of expansion energy of gas with gas pressure and content[J]. Journal of China Coal Society,2010,35(Sup.1):105−108.
    [29] JIANG Chenglin,XU Lehua,LI Xiaowei,et al. Identification model and indicator of outburst–prone coal seams[J]. Rock Mechanics and Rock Engineering,2015,48(1):409−415.. doi: 10.1007/s00603-014-0558-0
    [30] 王汉鹏,张玉强,袁亮,等. 煤粒初始释放瓦斯膨胀能的影响规律与温度效应分析[J]. 采矿与安全工程学报,2019,36(5):1052−1060.

    WANG Hanpeng,ZHANG Yuqiang,YUAN Liang,et al. Analysis of influence law and temperature effect of initial released gas expansion energy of the coal grain[J]. Journal of Mining & Safety Engineering,2019,36(5):1052−1060.
    [31] YANG Dingding,CHEN Yujia,TANG Jun,et al. Experimental research into the relationship between initial gas release and coal–gas outbursts[J]. Journal of Natural Gas Science and Engineering,2018,50:157−165.. doi: 10.1016/j.jngse.2017.12.015
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  12
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-07-17
  • 录用日期:  2023-10-25
  • 刊出日期:  2023-10-25
  • 网络出版日期:  2023-10-09

目录

    /

    返回文章
    返回