留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DeeplabV3+改进的煤岩显微组分组自动化测试模型

胡晋玮 奚峥皓 徐国忠 李忠峰 刘翔

胡晋玮,奚峥皓,徐国忠,等. 基于DeeplabV3+改进的煤岩显微组分组自动化测试模型[J]. 煤田地质与勘探,2023,51(10):27−36. doi: 10.12363/issn.1001-1986.23.01.0013
引用本文: 胡晋玮,奚峥皓,徐国忠,等. 基于DeeplabV3+改进的煤岩显微组分组自动化测试模型[J]. 煤田地质与勘探,2023,51(10):27−36. doi: 10.12363/issn.1001-1986.23.01.0013
HU Jinwei,XI Zhenghao,XU Guozhong,et al. An improved automated testing model for maceral groups in coals based on DeeplabV3+[J]. Coal Geology & Exploration,2023,51(10):27−36. doi: 10.12363/issn.1001-1986.23.01.0013
Citation: HU Jinwei,XI Zhenghao,XU Guozhong,et al. An improved automated testing model for maceral groups in coals based on DeeplabV3+[J]. Coal Geology & Exploration,2023,51(10):27−36. doi: 10.12363/issn.1001-1986.23.01.0013

基于DeeplabV3+改进的煤岩显微组分组自动化测试模型

doi: 10.12363/issn.1001-1986.23.01.0013
基金项目: 国家自然科学基金项目(12104289)
详细信息
    第一作者:

    胡晋玮,1995年生,男,江苏盐城人,硕士,研究方向为计算机视觉技术. E-mail:jinweihu_sues@163.com

    通信作者:

    奚峥皓,1981年生,男,上海人,博士,副教授,研究方向为计算机视觉、智能认知学习与控制. E-mail:zhenghaoxi@hotmail.com

  • 中图分类号: TP391.4;TQ533.6

An improved automated testing model for maceral groups in coals based on DeeplabV3+

  • 摘要: 煤岩显微组分组的识别对分析煤炭化学性质起到关键作用。人工识别方法费时费力,且专业性要求较高。现有的计算机辅助识别有效方法多以深度学习语义分割模型为手段,但因煤岩显微图像组成复杂,且存在过渡组分,因此无法准确识别煤岩显微组分组。针对此问题,提出改进的DeeplabV3+语义分割模型,在改进模型中引入Swin Transformer骨干网络和SkNet网络。首先,针对煤岩显微图像各个组分组交错杂糅且存在过渡组分,特征提取困难,利用Swin Transformer骨干网络作为基础特征提取网络,提升模型对煤岩显微图像每种组分组的特征提取能力,并使得分割网络获得特征间信息交互的能力;其次,针对在模型中空洞空间卷积池化金字塔模块对特征利用率低的问题,将SkNet网络融入空洞空间卷积池化金字塔模块,强化空洞空间卷积池化金字塔模块对重要特征的提取能力,并抑制非必要特征对最终预测结果的干扰;最后,将改进的DeeplabV3+模型与现有先进算法通过实验进行性能比较,结果表明:改进的DeeplabV3+语义分割模型在煤岩显微图像测试集上的像素准确率为92.06%,与随机森林方法、U-Net语义分割模型和DeeplabV3+语义分割模型相比像素准确率分别提高了9.48%、6.90%和3.40%;改进的DeeplabV3+语义分割模型与人工点测方法测试结果相近。改进的DeeplabV3+语义分割模型较现有煤岩显微组分组自动识别模型性能更优,可作为一种强大的计算机辅助人工识别煤岩显微组分组的手段。

     

  • 图  改进的DeeplabV3+网络结构

    Fig. 1  Improved DeeplabV3+ network architecture

    图  基于Swin Transformer网络改进的DeeplabV3+编码器

    Fig. 2  Improved DeeplabV3+ encoder based on the Swin Transformer network

    图  Swin Transformer的Swin-Tiny网络结构

    Fig. 3  Swin-Tiny architecture of Swin Transformer

    图  Swin Transformer Block结构

    Fig. 4  Structure of the Swin Transformer Block

    图  基于移动窗口的自注意力计算流程

    Fig. 5  Self-attention calculation process based on shifted windows

    图  基于SkNet改进的DeeplabV3+

    Fig. 6  Improved DeeplabV3+ based on the SkNet

    图  SkNet网络改进的ASPP模块

    Fig. 7  Improved ASPP module based on the SkNet

    图  煤岩显微图像原图(左)和标注结果示例(右)

    Fig. 8  Original microscopic coal images (left) and the example of manual annotation results (right)

    图  2种模型下损失曲线和模型像素准确率(PA)曲线对比

    Fig. 9  Comparison of the loss curves and PA curves for improved DeeplabV3+ and DeeplabV3+

    图  10  不同煤岩显微组分识别模型预测结果

    Fig. 10  Prediction results of different identification models for coal maceral groups

    图  11  使用Swin-Tiny和Swin-Small的分割模型预测结果

    Fig. 11  Prediction results of Swin-Tiny and Swin-Small segmentation models

    图  12  使用Swin-Small分割模型的损失曲线和模型像素准确率曲线

    Fig. 12  Loss curves and PA curves of the Swin-Small segmentation model

    图  13  各显微组分组的比例

    Fig. 13  Proportions of various maceral groups

    表  1  不同煤岩显微组分组识别模型预测结果

    Table  1  Pediction results of different identification models for coal maceral groups 单位:%

    方法PAMPAMIoU
    随机森林[9]82.5863.3651.12
    FCN-16s80.2653.2945.10
    U-Net85.1667.1953.25
    DeeplabV385.4568.4552.24
    DeeplabV3+88.6670.6659.00
    改进的DeeplabV3+92.0674.6663.51
    下载: 导出CSV

    表  2  改进的DeeplabV3+模型消融实验

    Table  2  Ablation experiment results of the improved DeeplabV3+ model 单位:%

    方法PAMPAMIoU
    DeeplabV3+88.6670.6659.00
    Swin-Deeplab89.4571.4561.24
    改进的DeeplabV3+92.0674.6663.51
    下载: 导出CSV

    表  3  改进的DeeplabV3+模型识别煤岩显微图像混淆矩阵

    Table  3  Confusion matrix of the improved DeeplabV3+ model for identification of microscopic coal images

    显微组分组镜质组惰质组壳质组矿物质环氧树脂
    镜质组0.950.02000.03
    惰质组00.9100.080.01
    壳质组0.0200.7900.19
    矿物质00.0200.980
    环氧树脂000.0300.97
    下载: 导出CSV

    表  4  Swin-Deeplab模型识别煤岩显微图像混淆矩阵

    Table  4  Confusion matrix of the Swin-Deeplab model for identification of microscopic coal images

    显微组分组镜质组惰质组壳质组矿物质环氧树脂
    镜质组0.930.03000.04
    惰质组0.020.9000.080
    壳质组0.0200.7400.24
    矿物质00.0500.950
    环氧树脂000.0500.95
    下载: 导出CSV

    表  5  DeeplabV3+模型识别煤岩显微图像混淆矩阵

    Table  5  Confusion matrix of the DeeplabV3+ model for identification of microscopic coal images

    显微组分组镜质组惰质组壳质组矿物质环氧树脂
    镜质组0.900.0300.030.04
    惰质组00.890.020.080.01
    壳质组0.0200.7100.27
    矿物质0.020.0200.960
    环氧树脂000.0600.94
    下载: 导出CSV
  • [1] GAO Xuerui,ZHAO Yong,LU Shibao,et al. Impact of coal power production on sustainable water resources management in the coal–fired power energy bases of Northern China[J]. Applied Energy,2019,250:821−833.. doi: 10.1016/j.apenergy.2019.05.046
    [2] WANG Hongdong,LEI Meng,CHEN Yilin,et al. Intelligent identification of maceral components of coal based on image segmentation and classification[J]. Applied Sciences,2019,9(16):3245.. doi: 10.3390/app9163245
    [3] 范章群,宋孝忠. 新疆中生代煤中半镜质组特征及其研究意义[J]. 煤田地质与勘探,2014,42(5):9−12.

    FAN Zhangqun,SONG Xiaozhong. Characteristics of semi–vitrinite of the Mesozoic coal in Xinjiang area and their research significance[J]. Coal Geology & Exploration,2014,42(5):9−12.
    [4] 范章群. 我国煤岩学研究现状及前景分析[J]. 中国煤炭地质,2017,29(2):15−19.. doi: 10.3969/j.issn.1674-1803.2017.02.04

    FAN Zhangqun. Coal petrology study status quo and prospect in China[J]. Coal Geology of China,2017,29(2):15−19.. doi: 10.3969/j.issn.1674-1803.2017.02.04
    [5] MLYNARCZUK M ,SKIBA M. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal[J]. Computers & Geosciences,2017,103:133−141.
    [6] SINGH P K,SINGH M P,SINGH A K,et al. The prediction of the liquefaction behavior of the East Kalimantan coals of Indonesia:An appraisal through petrography of selected coal samples[J]. Energy Sources,2013,35(18):1728−1740.. doi: 10.1080/15567036.2010.529731
    [7] 宋孝忠,张群. 煤岩显微组分组图像自动识别系统与关键技术[J]. 煤炭学报,2019,44(10):3085−3097.. doi: 10.13225/j.cnki.jccs.2019.1103

    SONG Xiaozhong,ZHANG Qun. Automatic image recognition system and key technologies of maceral group[J]. Journal of China Coal Society,2019,44(10):3085−3097.. doi: 10.13225/j.cnki.jccs.2019.1103
    [8] 宋孝忠. 煤岩显微图像假边界对显微组分组自动识别的影响[J]. 煤田地质与勘探,2019,47(6):45−50.

    SONG Xiaozhong. Effect of false boundary of microscopic image on automatic identification of maceral group[J]. Coal Geology & Exploration,2019,47(6):45−50.
    [9] WANG Hongdong,LEI Meng,LI Ming,et al. Intelligent estimation of vitrinite reflectance of coal from photomicrographs based on machine learning[J]. Energies,2019,12(20):3855.. doi: 10.3390/en12203855
    [10] WANG Yue,BAI Xiangfei,WU Linlin,et al. Identification of maceral groups in Chinese bituminous coals based on semantic segmentation models[J]. Fuel,2022,308:121844.. doi: 10.1016/j.fuel.2021.121844
    [11] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder–decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV), 2018: 801–818.
    [12] HASAN P. Multi–task semantic segmentation of CT images for COVID–19 infections using DeepLabV3+ based on dilated residual network[J]. Physical and Engineering Sciences in Medicine,2022,45(2):443−455.. doi: 10.1007/s13246-022-01110-w
    [13] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proc. of the 2021 International Conference on Computer Vision, 2021: 10012–10022.
    [14] FU Jun,LIU Jing,JIANG Jie,et al. Scene segmentation with dual relation–aware attention network[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(6):2547−2560.. doi: 10.1109/TNNLS.2020.3006524
    [15] MOU Lichao,HUA Yuansheng,ZHU Xiaoxiang. Relation matters:Relational context–aware fully convolutional network for semantic segmentation of high–resolution aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(11):7557−7569.. doi: 10.1109/TGRS.2020.2979552
    [16] ZHENG Sixiao, LU Jiachen, ZHAO Hengshuang, et al. Rethinking semantic segmentation from a sequence–to–sequence perspective with transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 6877–6886.
    [17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//International Conference on Learning Representations, 2021.
    [18] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective Kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的显微组分组和矿物测定方法: GB/T 8899—2013[S]. 北京: 中国标准出版社, 2013.
    [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 烟煤显微组分分类: GB/T 15588—2013[S]. 北京: 中国标准出版社, 2014.
    [21] EVAN S,JONATHAN L,TREVOR D. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(4):640−651.
    [22] RONNEBERGER O, FISCHER P, BROX T. U–Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer–assisted Intervention. Cham: Springer, 2015: 234–241.
    [23] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. Computer Vision and Pattern Recognition, 2017.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  8
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 修回日期:  2023-05-09
  • 录用日期:  2023-10-25
  • 刊出日期:  2023-10-25
  • 网络出版日期:  2023-09-23

目录

    /

    返回文章
    返回