留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TBM施工岩巷掘探一体化技术研究进展与思考

袁亮 张平松

袁亮,张平松. TBM施工岩巷掘探一体化技术研究进展与思考[J]. 煤田地质与勘探,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967
引用本文: 袁亮,张平松. TBM施工岩巷掘探一体化技术研究进展与思考[J]. 煤田地质与勘探,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967
YUAN Liang,ZHANG Pingsong. Research progress and thinking on integrated tunneling and detection technology of rock roadway with TBM[J]. Coal Geology & Exploration,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967
Citation: YUAN Liang,ZHANG Pingsong. Research progress and thinking on integrated tunneling and detection technology of rock roadway with TBM[J]. Coal Geology & Exploration,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967

TBM施工岩巷掘探一体化技术研究进展与思考

doi: 10.12363/issn.1001-1986.22.12.0967
基金项目: 安徽高校协同创新项目(GXXT-2019-029)
详细信息
    第一作者:

    袁亮,1960年生,男,安徽金寨人,中国工程院院士,主要研究领域:煤与瓦斯共采、煤炭安全智能精准开采、动力灾害防控、粉尘防控与职业安全健康等. E-mail:yuanl_1960@sina.com

  • 中图分类号: TD263

Research progress and thinking on integrated tunneling and detection technology of rock roadway with TBM

  • 摘要: 煤矿岩巷全断面掘进机(TBM)施工,是满足集约化、现代化、智能化大型矿井深部高强度开发采掘平衡与高效建设生产的重要方法之一。但是,TBM掘进对于不良地质条件适应性较差,尤其是破碎带、断层、软弱岩层及富水区等复杂地质条件会造成坍塌、卡机、卡盾、涌水等问题,从而限制了其发展。为充分发挥TBM快速掘进效率,将超前探测仪器与TBM机械进行一体化设计,开展随掘探测是煤矿岩巷TBM掘进发展亟需突破的关键技术。从TBM施工岩巷的掘探一体化技术研究出发,回顾了近年来隧道、煤矿岩巷随掘探测技术新进展,介绍了包括随掘地震、随掘电法、随掘瞬变电磁等掘探一体化技术;围绕提高随掘超前探测精度,实现高精度异常体成像,论述了岩巷TBM掘探一体化技术的发展方向,包括超前探测数据采集系统、信号处理方法、巷道界面成像新方法新技术等。认为掘探一体化设备要向自动化、信息化、智能化方向发展,要形成以智能化控制系统为核心的掘进、探测、预报集成化管理平台,实现掘进参数的智能选取、超前探测数据的实时处理与叠加成像,形成掘探一体智能控制与地质条件融合判识系统,为深部煤炭资源的精准开发利用与煤矿智能化建设提供透明地质条件支撑。

     

  • 图  子波估计和波形修正后的波形对比[15]

    Fig. 1  Comparison of waveform after wavelet estimation and waveform correction[15]

    图  偏移结果[21]

    Fig. 2  Migration-imaging results[21]

    图  TBM随掘电法观测系统[22-23,25]

    Fig. 3  Observation system of geoelectrics-while-tunneling with TBM [22-23,25]

    图  隧道工作面上观测点的电场ExEyEz分量衰减曲线对比[32]

    Fig. 4  Comparison of attenuation curves of Ex, Ey and Ez components of electric field at observation points on tunnel face[32]

    图  实测数据及其克希霍夫偏移成像解释结果[35]

    Fig. 5  Survey data and its Kirchhoff migration imaging results[35]

    图  移动阵列电极盾构超前探测系统的布置[38]

    Fig. 6  Arrangement of advanced detection system of moving array electrode for shield tunneling[38]

    图  TBM随掘地震掘探一体化体系

    Fig. 7  Integrated tunneling and detection system of TBM with seismic while tunneling

    图  TBM智能化控制系统

    Fig. 8  TBM intelligent control system

  • [1] 国家统计局. 能源转型持续推进节能降耗成效显著——党的十八大以来经济社会发展成就系列报告之十四[EB/OL]. http://www.stats.gov.cn/xxgk/jd/sjjd2020/202210/t20221008_1888971.html, 2020-10-08/2023-01-30.
    [2] 国家能源局. 我国煤炭工业实现十大历史性转变[EB/OL]. http://www.nea.gov.cn/2018-11/15_c13760-7900.htm, 2018-11-15/2023-01-30.
    [3] 中国煤炭工业协会. 煤炭工业“十四五”高质量发展指导意见[EB/OL]. www.chinacaj.net/I,34130820. html. 2021-06-04/2023-01-30.
    [4] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.
    [5] 刘泉声,时凯,黄兴. TBM应用于深部煤矿建设的可行性及关键科学问题[J]. 采矿与安全工程学报,2013,30(5):633−641.

    LIU Quansheng,SHI Kai,HUANG Xing. Feasibility of application of TBM in construction of deep coal mine and its key scientific problems[J]. Journal of Mining & Safety Engineering,2013,30(5):633−641.
    [6] 刘泉声,黄兴,时凯,等. 煤矿超千米深部全断面岩石巷道掘进机的提出及关键岩石力学问题[J]. 煤炭学报,2012,37(12):2006−2013.

    LIU Quansheng,HUANG Xing,SHI Kai,et al. Utilization of full face roadway boring machine in coal mines deeper than 1 000 m and the key rock mechanics problems[J]. Journal of China Coal Society,2012,37(12):2006−2013.
    [7] 张洪伟,胡兆锋,程敬义,等. 深部高温矿井大断面岩巷TBM 智能掘进技术:以“新矿1 号”TBM 为例[J]. 煤炭学报,2021,46(7):2174−2185.

    ZHANG Hongwei,HU Zhaofeng,CHENG Jingyi,et al. TBM techniques for intelligent excavating large–section rock roadway in the deep high–temperature coal mines:Application of TBM in Xinkuang No.1[J]. Journal of China Coal Society,2021,46(7):2174−2185.
    [8] 范京道,封华,宋朝阳,等. 可可盖煤矿全矿井机械破岩智能化建井关键技术与装备[J]. 煤炭学报,2022,47(1):499−514.

    FAN Jingdao,FENG Hua,SONG Zhaoyang,et al. Key technology and equipment of intelligent mine construction of whole mine mechanical rock breaking in Kekegai Coal Mine[J]. Journal of China Coal Society,2022,47(1):499−514.
    [9] 刘泉声,黄兴,刘建平,等. 深部复合地层围岩与TBM 的相互作用及安全控制[J]. 煤炭学报,2015,40(6):1213−1224.

    LIU Quansheng,HUANG Xing,LIU Jianping,et al. Interaction and safety control between TBM and deep mixed ground[J]. Journal of China Coal Society,2015,40(6):1213−1224.
    [10] 王杜娟,贺飞,王勇,等. 煤矿岩巷全断面掘进机(TBM)及智能化关键技术[J]. 煤炭学报,2020,45(6):2031−2044.

    WANG Dujuan,HE Fei,WANG Yong,et al. Tunnel boring machine (TBM) in coal mine and its intelligent key technology[J]. Journal of China Coal Society,2020,45(6):2031−2044.
    [11] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.
    [12] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
    [13] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.
    [14] 张平松,李圣林,邱实,等. 巷道快速智能掘进超前探测技术与发展[J]. 煤炭学报,2021,46(7):2158−2173.. doi: 10.13225/j.cnki.jccs.jj21.0562

    ZHANG Pingsong,LI Shenglin,QIU Shi,et al. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158−2173.. doi: 10.13225/j.cnki.jccs.jj21.0562
    [15] 张凤凯. TBM破岩震源探测数据的全波形反演和逆时偏移成像方法[D]. 济南: 山东大学, 2020.

    ZHANG Fengkai. Full waveform inversion and inverse time migration imaging method of the seismic data while tunneling using TBM drilling noise in tunnel[D]. Jinan: Shandong University, 2020.
    [16] LUTH S, GIESE R, RECHLIN A. A seismic exploration system around and ahead of tunnel excavation–onsite[C]//World Tunnel Congress 2008. 2008: 119–125.
    [17] RECHLIN A, LUTH S, GIESE R. Onsite: Integrated seismic imaging and interpretation for tunnel excavation[C]//Proceedings of the International Conference on Rock Joints and Jointed Rock Masses. 2009: 1–7.
    [18] 许新骥. TBM掘进破岩震源地震波超前地质探测方法及工程应用[D]. 济南: 山东大学, 2017.

    XU Xinji. TBM rock−breaking source seismic method and its applications for ahead geological prospecting in TBM construction tunnel[D]. Jinan: Shandong University, 2017.
    [19] 李圣林,张平松,姬广忠,等. 随掘地震超前探测掘进机震源信号的复合干涉处理研究[J]. 采矿与安全工程学报,2022,39(2):305−316.

    LI Shenglin,ZHANG Pingsong,JI Guangzhong,et al. Compound interference processing of roadheader source signal for advanced seismic detection while drilling[J]. Journal of Mining & Safety Engineering,2022,39(2):305−316.
    [20] 宋杰. 隧道施工不良地质三维地震波超前探测方法及其工程应用[D]. 济南: 山东大学, 2016.

    SONG Jie. The three−dimensional seismic ahead prospecting method and its application for adverse geology in tunnel construction[D]. Jinan: Shandong University, 2016.
    [21] LIU Bin,CHEN Lei,LI Shucai,et al. Three–dimensional seismic ahead–prospecting method and application in TBM tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering,2017,143(12):04017090.. doi: 10.1061/(ASCE)GT.1943-5606.0001785
    [22] KOPP T. Beam bore–tunnelling electrical ahead monitoring for TBM and drill & blast drivages[C]//Proceedings of 2006 China International Symposium on High Speed Railway Tunnels. Beijing, 2006: 574–588.
    [23] KAUS A,BOENING W. Beam−geoelectrical ahead monitoring for TBM−drives[J]. Geomechanics and Tunnelling,2008,1(5):442−450.. doi: 10.1002/geot.200800048
    [24] 李术才,聂利超,刘斌,等. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究[J]. 地球物理学报,2015,59(4):1434−1446.

    LI Shucai,NIE Lichao,LIU Bin,et al. Advanced detection and physical model test based on multi–electrode sources array resistivity method in tunnel[J]. Chinese Journal of Geophysics,2015,59(4):1434−1446.
    [25] 刘斌,李术才,李建斌,等. TBM掘进前方不良地质与岩体参数的综合获取方法[J]. 山东大学学报(工学版),2016,46(6):105−112.

    LIU Bin,LI Shucai,LI Jianbin,et al. Integrated acquisition method of adverse geology and rock properties ahead of tunnel face in TBM construction tunnel[J]. Journal of Shandong University (Engineering Science),2016,46(6):105−112.
    [26] 剪浩杰. TBM施工隧道前向三维多电极在线地质预报系统[D]. 武汉: 武汉工程大学, 2016.

    JIAN Haojie. On–line geological prediction system for three-dimensional multi electrode in front of TBM construction tunnel[D]. Wuhan: Wuhan Institute of Technology, 2016.
    [27] 田明禛. TBM机载激发极化超前地质预报仪的研制与工程应用[D]. 济南: 山东大学, 2016.

    TIAN Mingzhen. TBM Airborne instrument development of advanced geological prediction for induced polarization and its application for the engineering field[D]. Jinan: Shandong University, 2016.
    [28] 王传武. TBM施工隧道含水构造三维激发极化超前探测方法与应用[D]. 济南: 山东大学, 2017.

    WANG Chuanwu. Three−dimension induced polarization advanced prospecting method and its application for water bearing structure in TBM tunnel[D]. Jinan: Shandong University, 2017.
    [29] 聂利超. 隧道施工含水构造激发极化定量超前地质预报理论及其应用[D]. 济南: 山东大学, 2014.

    NIE Lichao. Quantitative identification theory and its application of advanced geological prediction for water–bearing structure using induced polarization in tunnel construction period[D]. Jinan: Shandong University, 2014.
    [30] 刘斌,李术才,聂利超,等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报,2012,34(10):1866−1876.

    LIU Bin,LI Shucai,NIE Lichao,et al. Advanced detection of water–bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1866−1876.
    [31] 胡佳豪. TBM施工隧道瞬变电磁超前探测研究[D]. 西安: 长安大学, 2020.

    HU Jiahao. Research on transient electromagnetic advanced detection of TBM construction tunnel[D]. Xi’an: Chang’an University, 2020.
    [32] 胡佳豪,李貅,刘航,等. TBM 机施工隧道瞬变电磁超前探测研究[J]. 物探与化探,2020,44(5):1183−1189.

    HU Jiahao,LI Xiu,LIU Hang,et al. Research on the advanced detection of transient electromagnetic in tunnel construction by TBM[J]. Geophysical and Geochemical Exploration,2020,44(5):1183−1189.
    [33] 卢绪山. 隧道TBM机瞬变电磁响应三维并行模拟及干扰去除研究[D]. 西安: 长安大学, 2014.

    LU Xushan. Three dimensional parallel simulation of transient electromagnetic response of tunnel boring machine and the elimination of its response[D]. Xi’an: Chang’an University, 2014.
    [34] 孙怀凤,李貅,卢绪山,等. 隧道强干扰环境瞬变电磁响应规律与校正方法:以 TBM 为例[J]. 地球物理学报,2016,59(12):4720−4732.

    SUN Huaifeng,LI Xiu,LU Xushan,et al. Transient electromagnetic responses in tunnels with strong interferences and the correcting method:A TBM example[J]. Chinese Journal of Geophysics,2016,59(12):4720−4732.
    [35] 戚志鹏,郭建磊,孙乃泉,等. 隧道瞬变电磁克希霍夫偏移成像与地质灾害探测[J]. 煤田地质与勘探,2022,50(5):129−135.

    QI Zhipeng,GUO Jianlei,SUN Naiquan,et al. Geological structure detection with tunnel transient electromagnetic Kirchhoff 2D migration imaging[J]. Coal Geology & Exploration,2022,50(5):129−135.
    [36] 赵栓峰,丁志兵,李凯凯,等. 盾构机掘进煤矿巷道超前探测系统[J]. 煤矿安全,2019,50(2):117−120.

    ZHAO Shuanfeng,DING Zhibing,LI Kaikai,et al. Advanced detection system for shield tunneling coal roadway[J]. Safety in Coal Mines,2019,50(2):117−120.
    [37] ZHAO Shuanfeng,WEI Mingle,ZHANG Chuanwei,et al. Coal mine inclined shaft advanced detection method and physical model test based on shield cutterhead moving array electrodes[J]. Energies,2019,12(9):1−15.
    [38] 赵栓峰,拜云瑞,黄涛,等. 基于移动阵列电极的盾构超前探测正演响应分析[J]. 煤田地质与勘探,2020,48(1):214−220.

    ZHAO Shuanfeng,BAI Yunrui,HUANG Tao,et al. Forward response analysis of shield advanced detection with moving array electrode[J]. Coal Geology & Exploration,2020,48(1):214−220.
  • 加载中
图(8)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  40
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-05
  • 刊出日期:  2023-01-25
  • 网络出版日期:  2023-02-14

目录

    /

    返回文章
    返回