非承压含水层定水头抽水两区井流数值模型研究

史鹏钰, 宗一杰, 滕开庆, 刘健军, 肖良

史鹏钰,宗一杰,滕开庆,等. 非承压含水层定水头抽水两区井流数值模型研究[J]. 煤田地质与勘探,2023,51(10):124−133. DOI: 10.12363/issn.1001-1986.22.12.0944
引用本文: 史鹏钰,宗一杰,滕开庆,等. 非承压含水层定水头抽水两区井流数值模型研究[J]. 煤田地质与勘探,2023,51(10):124−133. DOI: 10.12363/issn.1001-1986.22.12.0944
SHI Pengyu,ZONG Yijie,TENG Kaiqing,et al. Numerical model of two-region flow by constant-head pumping in an unconfined aquifer[J]. Coal Geology & Exploration,2023,51(10):124−133. DOI: 10.12363/issn.1001-1986.22.12.0944
Citation: SHI Pengyu,ZONG Yijie,TENG Kaiqing,et al. Numerical model of two-region flow by constant-head pumping in an unconfined aquifer[J]. Coal Geology & Exploration,2023,51(10):124−133. DOI: 10.12363/issn.1001-1986.22.12.0944

 

非承压含水层定水头抽水两区井流数值模型研究

基金项目: 国家自然科学基金青年基金项目(41807197);广西自然科学基金项目(2018GXNSFAA138042);河北高层次人才资助项目(B2018003016)
详细信息
    作者简介:

    史鹏钰,1997年生,男,河南周口人,硕士,从事水文地质与地下水动力学研究. E-mail:273168729@qq.com

    通讯作者:

    肖良,1985年生,男,广西崇左人,博士,副教授,从事水文地质与地下水动力学研究. E-mail:gxuxiaoliang@163.com

  • 中图分类号: P345

Numerical model of two-region flow by constant-head pumping in an unconfined aquifer

  • 摘要:

    为了揭示在非承压含水层中定水头抽水试验引起的达西−非达西两区流动机理,提出基于有限差分法的地下水定水头抽水井流数值模型。该模型根据抽水的流态特征将含水层分为2个区域:靠近抽水井的有限非达西渗流区域和远离抽水井的半无限达西渗流区域,其中非达西流区域流态的模拟基于Izbash方程实现。通过与COMSOL Multiphysics的有限元数值解进行比较,验证了所提出数值解的可靠性。最后,研究有限非达西流效应对水头和抽水井抽水速率的影响以及井内水头对抽水井抽水速率的影响。研究表明:在抽水试验中非达西区域的影响不可忽略,湍流会分别导致两区流中水头较纯非达西流和纯达西流的水头偏大和偏小,且随抽水时间的增加逐渐变大;通过减小抽水井井内水头或增大非达西系数可提高抽水速率,但该影响会随抽水时间的增加而逐渐减弱;断面流量随径向距离的增大而不断减小,断面流量与径向距离曲线下降速率不断减小,且在转换界面处会出现转折点。该模型为定量研究在非达西流和达西流耦合作用下抽水井附近的井流水头特征提供了一种简洁的方法,并为调查定水头抽水测试期间的抽水速率提供理论依据。

    Abstract:

    In order to reveal the mechanism of two-region Darcian and non-Darcian flow induced by constant-head pumping tests in unconfined aquifers, a numerical model of well flow by constant-head pumping underground based on finite difference solution was proposed. In the model, it is assumed that the aquifer is divided into two regions according to the pumping flow characteristics: the finite non-Darcian flow region near the pumping well and the semi-infinite Darcian flow region far away from the pumping well. Specifically, the flow regime in the non-Darcian flow region was simulated by the Izbash’s equation, and the reliability of the proposed solution was verified by comparison with finite element numerical solutions by COMSOL Multiphysics. Finally, the influence of finite non-Darcian effect on hydraulic head and pumping rate, as well as the influence of hydraulic head in the pumping well on pumping rate, was especially studied. The results show that the influence of non-Darcian flow region in the pumping test cannot be ignored. The turbulent flow makes the hydraulic head of the two-region flow larger than that of the pure non-Darcian flow and smaller than that of pure Darcian flow. Besides, such difference of the hydraulic head is increased with the pumping time. The pumping rate can be increased by reducing the hydraulic head in the pumping well or increasing the non-Darcian coefficient, but the effect is gradually decreased as the pumping continues. The flow rate at the cross-section is decreased with the increase of radial distance, the gradient of the flow rate-radial distance curve is decreased with time, and a turning point will appear at the conversion interface between the two regions. The proposed model provides a simple method for quantitative studies on the characteristics of hydraulic head near the pumping well under the coupling of non-Darcian and Darcian effects, and provides a theoretical basis for determining the pumping rate during constant-head pumping test.

  • 图  1   考虑两区转换的非承压含水层定水头抽水模型

    rw—抽水井有效半径,m;hw—抽水井中水头,m;R—N区和D区转换界面到抽水井中心的距离,m;b—含水层厚度,m

    Fig.  1   Schematic of the constant-head test in an unconfined aquifer considering the two-region transform

    图  2   有限差分解与Jacob和Lohman解对比

    Fig.  2   Comparison between the finite difference solution with Jacob and Lohman solution

    图  3   不同R值下有限差分解与数值解的水头−时间曲线对比

    Fig.  3   Comparison of head-time curves between finite difference solution and numerical solution for different R

    图  4   有限差分解界面距离−时间曲线与数值解的比较

    Fig.  4   Interface distance-time curve of finite difference solution vs numerical solution

    图  5   有限差分解与实测数据对比

    Fig.  5   Finite difference solution vs measured data

    图  6   泵井内不同水头下流量的动态变化

    Fig.  6   Dynamic development of the flow rates with different hydraulic head inside the pumping well

    图  7   不同非达西湍流系数对泵送流量的影响

    Fig.  7   Effects of different non-Darcy coefficients on pumping flow

    图  8   不同时间下径向距离对断面流量的影响

    Fig.  8   Influence of radial distance on cross-section flow at different time

    表  1   假设案例的参数值

    Table  1   Parameters of each hypothetical cases

    案例$ {h}_{\mathrm{w}}/\mathrm{m} $${K}_{1}/{(\mathrm{m}\cdot\mathrm{d}^{-1})}^{ {{n} }_{1} }$${K}_{2}/(\mathrm{m}\cdot \mathrm{d}^{-1})$$ {n}_{1} $$ {S}_{1} $$ {S}_{2} $$ b/\mathrm{m} $${r}_{{\rm{w}}}/\mathrm{m}$$ r/\mathrm{m} $$ d/\mathrm{m}\mathrm{m} $
    A91.11.11.10.010.01120.230.3
    B7,8,91.11.11.20.010.01100.250.3
    C91.11.11.0,1.2,1.40.010.01120.220.3
    D91.11.11.20.010.01120.220.3
    下载: 导出CSV
  • [1]

    MARKLE J M,ROWE R K,NOVAKOWSKI K S. A model for the constant–head pumping test conducted in vertically fractured media[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1995,19(7):457−473. DOI: 10.1002/nag.1610190702

    [2]

    CHEN C S,CHANG C C. Well hydraulics theory and data analysis of the constant–head test in an unconfined aquifer with the skin effect[J]. Water Resources Research,2003,39(5):1121−1135.

    [3] 柯瀚,胡杰,吴小雯,等. 竖井抽水下垃圾填埋场渗滤液运移规律研究[J]. 岩土工程学报,2018,40(5):786−793.

    KE Han,HU Jie,WU Xiaowen,et al. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering,2018,40(5):786−793.

    [4]

    JACOB C E,LOHMAN S W. Nonsteady flow to a well of constant drawdown in an extensive aquifer[J]. Eos,Transactions American Geophysical Union,1952,33(4):559−569. DOI: 10.1029/TR033i004p00559

    [5]

    CHANG Y C,YEH H D,CHEN G Y. Transient solution for radial two–zone flow in unconfined aquifers under constant–head test[J]. Hydrological Processes,2010,24(11):1496−1503. DOI: 10.1002/hyp.7610

    [6]

    DAN Hancheng,HE Linhua,XU Bo. Experimental investigation on non−Darcian flow in unbound graded aggregate material of highway pavement[J]. Transport in Porous Media,2016,112(1):189−206. DOI: 10.1007/s11242-016-0640-z

    [7] 王军辉,王峰. 论抽水的降落漏斗范围、影响半径与环境影响范围[J]. 水利学报,2020,51(7):827−834.

    WANG Junhui,WANG Feng. Discussion on the range of groundwater depression cone,radius of influence and scope of environmental impacts during pumping[J]. Journal of Hydraulic Engineering,2020,51(7):827−834.

    [8]

    LIU Zhongyu,XIA Yangyang,SHI Mingsheng,et al. Numerical simulation and experiment study on the characteristics of non−Darcian flow and rheological consolidation of saturated clay[J]. Water,2019,11(7):1385. DOI: 10.3390/w11071385

    [9]

    ZHUANG Chao,ZHOU Zhifang,ZHAN Hongbin,et al. New graphical methods for estimating aquifer hydraulic parameters using pumping tests with exponentially decreasing rates[J]. Hydrological Processes,2019,33(17):2314−2322. DOI: 10.1002/hyp.13470

    [10]

    LI Yabing,ZHOU Zhifang,ZHUANG Chao,et al. Non–Darcian effect on a variable–rate pumping test in a confined aquifer[J]. Hydrogeology Journal,2020,28(8):2853−2863. DOI: 10.1007/s10040-020-02223-w

    [11] 刘元会,常安定,邓秋霞. 非线性井流问题水头降深的分区研究[J]. 中国农村水利水电,2007(10):11−12.

    LIU Yuanhui,CHANG Anding,DENG Qiuxia. Study on sub–area water head drawdown of nonlinear well flow[J]. China Rural Water and Hydropower,2007(10):11−12.

    [12]

    YEH H D,CHANG Yachi. Recent advances in modelling of well hydraulics[J]. Advances in Water Resources,2013,51:27−51. DOI: 10.1016/j.advwatres.2012.03.006

    [13]

    XIAO Liang,YE Ming,XU Yongxin,et al. A simplified solution using Izbash’s Equation for non–Darcian flow in a constant rate pumping test[J]. Groundwater,2019,57(6):962−968. DOI: 10.1111/gwat.12886

    [14] 刘元会,常安定,邓秋霞. 线性非线性流并存区域井流问题的水头降深研究[J]. 西北农林科技大学学报(自然科学版),2005,33(3):113−115.

    LIU Yuanhui,CHANG Anding,DENG Qiuxia. Drawdown of well flow in the co−existed linear and nonlinear exponents[J]. Journal of Northwest Sci−Tech University of Agriculture and Forestry (Natural Science Edition),2005,33(3):113−115.

    [15]

    QUINN P M,PARKER B L,CHERRY J A. Validation of non−Darcian flow effects in slug tests conducted in fractured rock boreholes[J]. Journal of Hydrology,2013,486:505−518. DOI: 10.1016/j.jhydrol.2013.02.024

    [16]

    ALI R,MCFARLANE D,VARMA S,et al. Potential climate change impacts on the water balance of regional unconfined aquifer systems in south−western Australia[J]. Hydrology and Earth System Sciences Discussions,2012,9(5):6367−6408.

    [17]

    NARASIMHAN T N,ZHU Ming. Transient flow of water to a well in an unconfined aquifer:Applicability of some conceptual models[J]. Water Resources Research,1993,29(1):179−191. DOI: 10.1029/92WR01959

    [18]

    BOULTON N S. Analysis of data from non–equilibrium pumping tests allowing for delayed yield from storage[J]. Proceedings of the Institution of Civil Engineers,1963,26(3):469−482. DOI: 10.1680/iicep.1963.10409

    [19]

    DUPUIT J. Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et á travers les terrains perméablesm (2ème edition)[M]. Libraire des corps impérious des ponts et chaussées et des mines, 1863.

    [20]

    KRUSEMAN G P, RIDDER N A D, VERWEIJ J M. Analysis and evaluation of pumping test data[J]. ILRI, 1990, 47: 1−377.

    [21] 陈崇希, 林敏, 成建梅. 地下水动力学[M]. 北京: 地质出版社, 2011.
    [22]

    BRESCIANI E,DAVY P,DREUZY J R. Is the Dupuit assumption suitable for predicting the groundwater seepage area in hillslopes?[J]. Water Resources Research,2014,50(3):2394−2406. DOI: 10.1002/2013WR014284

    [23]

    DAGAN G. A method of determining the permeability and effective porosity of unconfined anisotropic aquifers[J]. Water Resources Research,1967,3(4):1059−1071. DOI: 10.1029/WR003i004p01059

    [24]

    NEUMAN S P. Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response[J]. Water Resources Research,1975,11(2):329−342. DOI: 10.1029/WR011i002p00329

    [25]

    WEN Zhang,HUANG Guanhua,ZHAN Hongbin,et al. Two–region non–Darcian flow toward a well in a confined aquifer[J]. Advances in Water Resources,2008,31(5):818−827. DOI: 10.1016/j.advwatres.2008.01.014

    [26]

    LI Yabing,ZHOU Zhifang,SHEN Qi,et al. Two–region Darcian and non–Darcian flow towards a well with exponentially decayed rates considering time–dependent critical radius[J]. Journal of Hydrology,2021,601:126712. DOI: 10.1016/j.jhydrol.2021.126712

    [27] 文章,黄冠华,刘壮添,等. 越流含水层中抽水井附近非达西流两区模型近似解析解[J]. 地球科学(中国地质大学学报),2011,36(6):1165−1172.

    WEN Zhang,HUANG Guanhua,LIU Zhuangtian,et al. An approximate analytical solution for two–region non–Darcian flow toward a well in a leaky aquifer[J]. Earth Science (Journal of China University of Geosciences),2011,36(6):1165−1172.

    [28]

    CHANG Yachi,YEH H D. Skin effect in generalized radial flow model in fractured media[J]. Geophysical Journal International,2011,185(1):78−84. DOI: 10.1111/j.1365-246X.2011.04943.x

    [29] 王全荣,唐仲华,文章,等. 越流含水层抽水井附近非达西流与达西流区界面位置变化规律研究[J]. 水利学报,2012,43(10):1171−1178.

    WANG Quanrong,TANG Zhonghua,WEN Zhang,et al. Numeric simulation for flow to a pumping well with moving boundary of the non–Darcian flow region in a leaky aquifer[J]. Journal of Hydraulic Engineering,2012,43(10):1171−1178.

    [30]

    BEAR J. Hydraulics of groundwater[M]. New York: Dover Publications, 1979.

    [31]

    MATHIAS S A,BUTLER A P,ZHAN Hongbin. Approximate solutions for Forchheimer flow to a well[J]. Journal of Hydraulic Engineering,2008,134(9):1318−1325. DOI: 10.1061/(ASCE)0733-9429(2008)134:9(1318)

    [32]

    WEN Zhang, HUANG Guanhua, ZHAN Hongbin. Non–Darcian flow in a single confined vertical fracture toward a well[J]. Journal of Hydrology, 2006, 330(3/4): 698–708.

    [33]

    BORDIER C, ZIMMER D. Drainage equations and non−Darcian modelling in coarse porous media or geosynthetic materials[J]. Journal of Hydrology, 2000, 228(3/4): 174–187.

    [34]

    MALAMA B,KUHLMAN K L,REVIL A. Theory of transient streaming potentials associated with axial–symmetric flow in unconfined aquifers[J]. Geophysical Journal International,2009,179(2):990−1003. DOI: 10.1111/j.1365-246X.2009.04336.x

    [35]

    MOENCH A F,PRICKETT T A. Radial flow in an infinite aquifer undergoing conversion from artesian to water table conditions[J]. Water Resources Research,1972,8(2):494−499. DOI: 10.1029/WR008i002p00494

    [36] 卢洪健,王卓然. 地下水模拟方法与应用软件研究进展[J]. 地下水,2022,44(6):49−52.

    LU Hongjian,WANG Zhuoran. Research progress in groundwater simulation methods and application softwares[J]. Groundwater,2022,44(6):49−52.

    [37] 孙广才. 水力学模型及其数值求解[J]. 渭南师范学院学报,2015,30(22):17−20.

    SUN Guangcai. Hydraulics model and its numerical solution[J]. Journal of Weinan Normal University,2015,30(22):17−20.

    [38] 文章,黄冠华,李健,等. 越流含水层中抽水井附近非达西流动模型的数值解[J]. 水动力学研究与进展,2009,24(4):448−454.

    WEN Zhang,HUANG Guanhua,LI Jian,et al. A numerical solution for non–Darcian flow toward a well in a leaky aquifer[J]. Chinese Journal of Hydrodynamics,2009,24(4):448−454.

    [39]

    CHUI T F M, FREYBERG D L. The use of COMSOL for integrated hydrological modelling[R]. COMSOL Conference, 2007.

    [40] 刘凯. 非完整井附近非达西渗流规律研究[D]. 武汉: 中国地质大学(武汉), 2014.

    LIU Kai. Investigation on non–Darcian flow toward a partially penetrating well[D]. Wuhan: China University of Geosciences (Wuhan), 2014.

    [41]

    JONES L,LEMAR T,TSAI C–T. Results of two pumping tests in Wisconsin age weathered till in Iowa[J]. Groundwater,1992,30(4):529−538. DOI: 10.1111/j.1745-6584.1992.tb01529.x

    [42]

    WEN Zhang,HUANG Guanhua,ZHAN Hongbin. An analytical solution for non−Darcian flow in a confined aquifer using the power law function[J]. Advances in Water Resources,2008,31(1):44−55. DOI: 10.1016/j.advwatres.2007.06.002

  • 期刊类型引用(2)

    1. 李志宏,杨军,李柯柯. 孔内组合声波法在桩基完整性检测中的应用研究. 广州建筑. 2024(08): 60-63 . 百度学术
    2. 吴雁,何勇,宋浩然,方紫韵,李振武,刘旭辉. 超磁致伸缩微驱动车削刀架及其可行性研究. 机床与液压. 2022(08): 47-51 . 百度学术

    其他类型引用(3)

图(8)  /  表(1)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  7
  • PDF下载量:  28
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-07-01
  • 网络出版日期:  2023-10-11
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回