留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富油煤原位热解开发地下体系封闭方法探讨

郭威 刘召 孙友宏 李强 邓孙华

郭威,刘召,孙友宏,等. 富油煤原位热解开发地下体系封闭方法探讨[J]. 煤田地质与勘探,2023,51(1):107−114. doi: 10.12363/issn.1001-1986.22.12.0941
引用本文: 郭威,刘召,孙友宏,等. 富油煤原位热解开发地下体系封闭方法探讨[J]. 煤田地质与勘探,2023,51(1):107−114. doi: 10.12363/issn.1001-1986.22.12.0941
GUO Wei,LIU Zhao,SUN Youhong,et al. Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal[J]. Coal Geology & Exploration,2023,51(1):107−114. doi: 10.12363/issn.1001-1986.22.12.0941
Citation: GUO Wei,LIU Zhao,SUN Youhong,et al. Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal[J]. Coal Geology & Exploration,2023,51(1):107−114. doi: 10.12363/issn.1001-1986.22.12.0941

富油煤原位热解开发地下体系封闭方法探讨

doi: 10.12363/issn.1001-1986.22.12.0941
基金项目: 国家重点研发计划课题(2019YFA0705502);吉林省中青年科技创新卓越团队项目(20220508135RC);吉林省发展和改革委员会自主创新能力建设项目(2022C021)
详细信息
    第一作者:

    郭威,1979年生,男,吉林公主岭人,博士,教授,从事非常规油气钻采技术研究. E-mail:guowei6981@jlu.edu.cn

    通信作者:

    刘召,1994年生,男,河南永城人,博士,助理研究员,从事油页岩原位开采地下体系封闭技术研究. E-mail:zhaoliu@jlu.edu.cn

  • 中图分类号: P634

Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal

  • 摘要: 我国富油煤资源丰富,采用地下原位热解“取油留碳”是富油煤资源绿色高效开发的主要趋势。富油煤地下原位热解开采尚处于技术研发阶段,需要围绕富油煤原位开发的关键技术开展攻关。地下体系封闭是保障富油煤原位热解开采能量高效利用和生态环保的关键技术之一,亟需研发并构建适于富油煤原位热解开发特点的地下体系封闭技术。根据目前地下体系封闭技术研究与应用现状,系统梳理总结了地下冻结、注浆帷幕、气驱止水、泡沫止水等各类地下体系封闭技术原理与优缺点,深入分析了各类技术的地层适应性。结合富油煤层埋深、层厚、区域构造等地质特点,以及热解开发工艺和规模,讨论了不同体系封闭技术在富油煤热解开发中的适用性。探讨了体系封闭技术研发的发展趋势,即创新现有技术原理、发展复合封闭技术。针对地下体系封闭技术的工程实施,围绕开发前精细设计、开发中严密监测和开发后安全恢复,提出了包括地下体系封闭设计−监测−修复和环境恢复的系统方法。通过整合富油煤原位热解、地下体系封闭、产物驱采、CO2地质封存等关键技术,提出了富油煤地下原位热解开发及CO2地质封存一体化技术构想,为我国富油煤地下原位热解开采技术研发与工业化应用提供参考。

     

  • 图  地下冻结技术原理与壳牌公司冻结墙试验井位布置方案[10]

    Fig. 1  Principle of AGF technology and well layout of Shell’s freezing wall tests[10]

    图  注浆帷幕技术原理

    Fig. 2  Technical principle of grouting curtain

    图  气驱止水封闭技术原理[9]

    Fig. 3  Schematic of water-stopping and sealing technology by gas flooding[9]

    图  地下体系封闭设计−监测−修复和环境恢复系统方法

    Fig. 4  System methods of design-monitoring-restoration of underground system sealing and environmental restoration

    图  富油煤地下原位热解开发及二氧化碳地质封存一体化技术体系构想

    Fig. 5  Conception of integrated technology of underground in-situ pyrolysis exploitation of tar-rich coal and CO2 geological storage

    表  1  4种地下体系封闭技术特点

    Table  1  Characteristics of 4 underground system sealing methods

    技术种类适应地层封闭范围工程应用情况对地层和工艺的影响
    地下冻结技术各类地层封闭半径小于1 m浅层地层影响可逆
    注浆帷幕技术高渗、浅埋深地层封闭半径小于1 m浅层地层影响不可逆
    气驱止水封闭技术无断层或溶洞等易发生
    气体窜流的地层
    封闭半径可达数十米浅层、中深层油页岩
    原位开采
    对地层无影响,具有驱油
    效果
    泡沫止水技术各类地层,尤其适用于
    渗透率极差较大的地层
    封闭半径中等,取决于
    注入泡沫压力
    石油工程对地层无影响,具有驱油
    效果
    下载: 导出CSV
  • [1] 樊大磊,王宗礼,李文博,等. 2021年国内外油气资源形势分析及展望[J]. 中国矿业,2022,31(1):26−31.

    FAN Dalei,WANG Zongli,LI Wenbo,et al. Analysis and prospects of oil and gas resource situation at home and abroad in 2021[J]. China Mining Magazine,2022,31(1):26−31.
    [2] 张蕾,韩智坤,舒浩,等. 陕北富油煤低温热解提油基础特性[J]. 煤炭工程,2022,54(9):124−128.

    ZHANG Lei,HAN Zhikun,SHU Hao,et al. Basic characteristics of tar extraction in low temperature pyrolysis of tar–rich coal from northen Shaanxi[J]. Coal Engineering,2022,54(9):124−128.
    [3] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377.

    WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low–carbon of tar–rich coal as coal–based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377.
    [4] 马丽,段中会,杨甫,等. “双碳”背景下煤炭原位地下热解采油意义研究[J]. 中国煤炭地质,2022,34(4):5−7.

    MA Li,DUAN Zhonghui,YANG Fu,et al. Study on the significance of coal in–situ underground pyrolytic oil production under carbon peaking and carbon neutrality background[J]. Coal Geology of China,2022,34(4):5−7.
    [5] 中国煤炭地质总局. 西北地区富油煤资源评价与开发利用研究[R]. 北京: 中国煤炭地质总局, 2021.
    [6] 孙友宏,郭威,邓孙华. 油页岩地下原位转化与钻采技术现状及发展趋势[J]. 钻探工程,2021,48(1):57−67.

    SUN Youhong,GUO Wei,DENG Sunhua. The status and development trend of in–situ conversion and drilling exploitation technology for oil shale[J]. Drilling Engineering,2021,48(1):57−67.
    [7] 汪友平,王益维,孟祥龙,等. 美国油页岩原位开采技术与启示[J]. 石油钻采工艺,2013,35(6):55−59.

    WANG Youping,WANG Yiwei,MENG Xianglong,et al. Enlightenment of American’s oil shale in−situ retorting technology[J]. Oil Drilling & Production Technology,2013,35(6):55−59.
    [8] 刘召. 油页岩原位开采气驱止水特征实验和数值模拟及应用研究[D]. 长春: 吉林大学, 2021.

    LIU Zhao. Experimental and numerical study on the characteristics of water blocking by gas flooding and application in oil shale in–situ exploitation[D]. Changchun: Jilin University, 2021.
    [9] SUN Youhong,LIU Zhao,LI Qiang,et al. Controlling groundwater infiltration by gas flooding for oil shale in situ pyrolysis exploitation[J]. Journal of Petroleum Science and Engineering,2019,179:444−454.
    [10] BRANDT A R. Converting oil shale to liquid fuels:Energy inputs and greenhouse gas emissions of the shell in situ conversion process[J]. Environmental Science & Technology,2008,42(19):7489−7495.
    [11] 张渺. 地下水对油页岩原位裂解注浆止水浆液扩散特性的影响研究[D]. 长春: 吉林大学, 2020.

    ZHANG Miao. Study on the influence of groundwater on the diffusion characteristics of slurry in the grouting for oil shale in–situ pyrolysis project[D]. Changchun: Jilin University, 2020.
    [12] LIU Zhao,SUN Youhong,GUO Wei,et al. Experimental study of the characteristics of gas–injection barrier in two–dimensional porous media[J]. Journal of Hydrology,2021,593:125919.
    [13] ZHANG Song,YUE Zurun,LU Xiangzhong,et al. Model test and numerical simulation of foundation pit constructions using the combined artificial ground freezing method[J]. Cold Regions Science and Technology,2023,205:103700.
    [14] 李粮纲,唐平,何维山,等. 深矿钻孔帷幕灌浆的数值模拟与应用[J]. 探矿工程(岩土钻掘工程),2010,37(12):36−40.

    LI Lianggang,TANG Ping,HE Weishan,et al. Numerical simulation of curtain grouting in deep borehole and the application[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2010,37(12):36−40.
    [15] GUO Wei,ZHANG Miao,SUN Youhong,et al. Numerical simulation and field test of grouting in Nong’an pilot project of in–situ conversion of oil shale[J]. Journal of Petroleum Science and Engineering,2020,184:106477.
    [16] CHEN Danqi,ZHAO Hongwei,LIU Kun,et al. The effect of emulsion and foam on anti–water coning during nitrogen foam injection in bottom–water reservoirs[J]. Journal of Petroleum Science and Engineering,2021,196:107766.
    [17] DAVARZANI H,ARANDA R,COLOMBANO S,et al. Experimental study of foam propagation and stability in highly permeable porous media under lateral water flow:Diverting groundwater for application to soil remediation[J]. Journal of Contaminant Hydrology,2021,243:103917.
    [18] 许婷,李宁,姚征,等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术,2022,50(3):161−168.

    XU Ting,LI Ning,YAO Zheng,et al. Distribution and geological controls of tar–rich coals in Yushen mining area of northern Shaanxi[J]. Coal Science and Technology,2022,50(3):161−168.
    [19] 刘浩,候吉峰,姜永东,等. 煤与页岩渗透性对比实验研究[J]. 煤矿安全,2018,49(3):36−39.

    LIU Hao,HOU Jifeng,JIANG Yongdong,et al. Experimental comparison study on permeability of coal and shale[J]. Safety in Coal Mines,2018,49(3):36−39.
    [20] 刘向阳. 煤矿深部岩层劈裂注浆扩散机理研究[D]. 合肥: 合肥工业大学, 2021.

    LIU Xiangyang. The mechanism of capillary–film water migration in freezing soil and its experimental study[D]. Hefei: Hefei University of Technology, 2021.
    [21] LIU Zhao,SUN Youhong,GUO Wei,et al. Effects of gas injection combined with wettability alteration on boundary water inrush[J]. Journal of Natural Gas Science and Engineering,2021,90:103920.
    [22] 吕士东. 油页岩原位裂解止水注浆实验及数值模拟研究[D]. 长春: 吉林大学, 2017.

    LYU Shidong. Experimental study and numerical simulation of sealing grouting for oil shale in–situ pyrolysis[D]. Changchun: Jilin University, 2017.
    [23] LIU Zhao,SUN Youhong,WANG Bingge,et al. Experimental study of artificial ground freezing by natural cold gas injection[J]. Applied Sciences,2020,10(17):6055.
    [24] 薛香玉, 王长安, 邓磊, 等. 基于全生命周期的富油煤原位热解碳排放研究[J]. 煤炭学报, 2022: 1–11[2023-01-11]. DOI: 10.13225/j.cnki.jccs.2022.0444.

    XUE Xiangyu, WANG Chang’an, DENG Lei, et al. Study on carbon emissions from in–situ pyrolysis of tar–rich coal based on full life cycle analysis method[J]. Journal of China Coal Society, 2022: 1–11[2023-01-11]. DOI: 10.13225/j.cnki.jccs.2022.0444.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  13
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-10
  • 修回日期:  2023-01-07
  • 录用日期:  2023-01-25
  • 刊出日期:  2023-01-25
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回