留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

露天煤矿排土场土层重构及接菌对植物根系提水作用试验研究

毕银丽 高学江 柯增鸣 肖礼

毕银丽,高学江,柯增鸣,等. 露天煤矿排土场土层重构及接菌对植物根系提水作用试验研究[J]. 煤田地质与勘探,2022,50(12):12−20. doi: 10.12363/issn.1001-1986.22.07.0595
引用本文: 毕银丽,高学江,柯增鸣,等. 露天煤矿排土场土层重构及接菌对植物根系提水作用试验研究[J]. 煤田地质与勘探,2022,50(12):12−20. doi: 10.12363/issn.1001-1986.22.07.0595
BI Yinli,GAO Xuejiang,KE Zengming,et al. Experimental study on effect of soil layer reconstruction and inoculation on plant root hydraulic lift in open-pit coal mine dump[J]. Coal Geology & Exploration,2022,50(12):12−20. doi: 10.12363/issn.1001-1986.22.07.0595
Citation: BI Yinli,GAO Xuejiang,KE Zengming,et al. Experimental study on effect of soil layer reconstruction and inoculation on plant root hydraulic lift in open-pit coal mine dump[J]. Coal Geology & Exploration,2022,50(12):12−20. doi: 10.12363/issn.1001-1986.22.07.0595

露天煤矿排土场土层重构及接菌对植物根系提水作用试验研究

doi: 10.12363/issn.1001-1986.22.07.0595
基金项目: 国家重点研发计划项目(2022YFF1303300);国家自然科学基金面上项目(51974326)
详细信息
    第一作者:

    毕银丽,1971年生,女,陕西米脂人,博士,长江学者特聘教授,博士生导师,从事矿山生态修复研究. E-mail:ylbi88@126.com

  • 中图分类号: TD824.8;P642.16

Experimental study on effect of soil layer reconstruction and inoculation on plant root hydraulic lift in open-pit coal mine dump

  • 摘要: 露天煤矿排土场土层重构对于生态重建具有重要意义,为研究接种深色有隔内生真菌(dark septate endophytes, DSE)对不同重构土层模式下玉米根系水分的利用效应,采用土柱模拟培养试验,设置4种类型土层处理,每种土层类型下设置接菌及对照处理,共8组处理。结果表明:掺黄土20%处理下玉米根长密度最大,分别为掺黄土0%、10%和40%的3.2、2.4、2.8倍,水分胁迫后根系具有向下生长、吸取深层水分的能力;基于δ18O值的MixSIAR模型水源分析,掺黄土0%处理下玉米主要利用0~25 cm处的水分,水分利用效率达到80%;掺黄土10 %处理下玉米主要利用15~35 cm处的水分,水分利用效率达到64%;而掺黄土20%处理下玉米对0~25 cm处的水分利用效率仅为36%,对25~45 cm处水分利用率达到64%,说明掺黄土20%处理下玉米主要利用土壤深层水分。接种DSE提高了植物吸收更深层水的能力,掺黄土20%处理下水分利用深度向下增加了5 cm,掺黄土20%基质中接菌处理在干旱胁迫后植物根系提水量达到最大,生长期总提水量较不接菌处理提升了45%;在不接菌条件下掺黄土20%植物根系提水量是掺黄土0%的1.45倍,而在接菌条件下掺黄土20%植物根系提水量可达到掺黄土0%的1.72倍。综上认为,接种DSE及土层重构均对提升植物提水能力具有显著作用。此外,本研究结果对露天矿区排土场土层重构过程中土壤改良及植物的水分利用效率提供实验参考依据。

     

  • 图  土柱试验装置

    Fig. 1  Soil column test device

    图  不同处理各层的根质量密度和根长密度

    Fig. 2  Root mass density and root length density in each layer of different treatments

    图  不同处理土壤最终含水率

    Fig. 3  Final soil moisture content for different treatments

    图  不同处理玉米水、土壤水中δ18O的变化

    Fig. 4  Changes of δ18O in corn water and soil water under different treatments

    图  不同处理玉米对各层水分利用比例

    Fig. 5  The water utilization ratio of different maize treatments to each layer

    图  玉米水分胁迫下提水量

    Fig. 6  The amount of water to be lifted under water stress in maize

    表  1  土壤颗粒机械组成

    Table  1  Soil particle size compositions

    土质
    类型
    各粒径质量分数/%
    黏粒
    (<0.002 mm)
    粉粒
    (0.002~0.020 mm)
    砂粒
    (>0.020 mm)
    S00.62b22.53c72.50a
    S10.67b25.42b70.16ab
    S20.76b27.16b68.26b
    S31.35a36.93a60.48c
      注:同列数字后的字母不相同表示0.05水平上差异显著。
    下载: 导出CSV

    表  2  玉米地上部分各指标统计

    Table  2  Statistical table of each index of maize above ground

    处理方式株高/cm茎粗/cm鲜重/g干重/g全氮质量分数/%全磷质量分数/%侵染率/%
    S0+M81±6.0c6±0.52cd16.6±1.2d2.5±0.08c1.8±0.06d0.69±0.02d42.46
    S0−M70±4.9d5.3±0.17d7.0±0.8e1.2±0.06d1.1±0.04e0.57±0.01e
    S1+M112±7.2b7.2±0.93ab29.8±1.2ab4.5±0.11b3.6±0.09ab0.81±0.02bc26.50
    S1−M105±6.5b6.9±0.65bc26.7±1.3b4.2±0.09b3.5±0.12bc0.77±0.02c
    S2+M124±4.0a8.3±0.47a38.0±1.8a6.5±0.15a4.1±0.15a0.86±0.04a28.47
    S2−M115±2.1ab8.2±0.25a32.6±1.6ab6.2±0.20a4.1±0.10a0.86±0.02a
    S3+M111±6.8b8.1±0.87a34.0±1.4ab5.3±0.15ab3.6±0.08ab0.82±0.03ab25.40
    S3−M109±4.5b7.8±0.22ab31.2±1.5ab4.6±0.13b3.0±0.06c0.81±0.01bc
    S******************
    M**Ns*******
    SMNsNsNsNsNs**
      注:S代表重构土层;M代表接菌;Ns代表显著性水平P≥0.05;*代表P<0.05;**代表 P<0.01;***代表 P<0.001;同列的字母不相同表示0.05水平上差异显著。
    下载: 导出CSV

    表  3  不同处理各层3个等级根的根长密度百分比统计

    Table  3  Statistical table of root length density percentage of three grades of roots in different treatments

    根类型深度/cm根长密度百分比/%
    S0+MS0−MS1+MS1−MS2+MS2−MS3+MS3−M
    三级根0~155857514655544648
    15~255256556062616054
    25~355655606066635250
    35~45520583959596259
    次根0~152425262924253226
    15~252629292521212736
    25~352932262720233044
    35~45320244425242730
    主根0~151818232521212226
    15~252215161517181310
    25~35151314131414186
    35~45160181716171111
    下载: 导出CSV
  • [1] 申艳军,杨博涵,王双明,等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J]. 煤田地质与勘探,2022,50(6):104−117.. doi: 10.12363/issn.1001-1986.21.12.0887

    SHEN Yanjun,YANG Bohan,WANG Shuangming,et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River[J]. Coal Geology & Exploration,2022,50(6):104−117.. doi: 10.12363/issn.1001-1986.21.12.0887
    [2] 毕银丽,彭苏萍,杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报,2021,46(5):1355−1364.

    BI Yinli,PENG Suping,DU Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi−arid areas of western China[J]. Journal of China Coal Society,2021,46(5):1355−1364.
    [3] ZHANG Haitao,XU Guangquan,CHEN Xiaoqing,et al. Hydrogeochemical characteristics and groundwater inrush source identification for a multi–aquifer system in a coal mine[J]. Acta Geologica Sinica (English Edition),2019,93(6):1922−1932.. doi: 10.1111/1755-6724.14299
    [4] 李莉,李海霞,马兰. 宁东煤田矿井水资源及其利用现状分析[J]. 干旱区资源与环境,2021,35(8):108−113.. doi: 10.13448/j.cnki.jalre.2021.221

    LI Li,LI Haixia,MA Lan. The mine water resources and its utilization status in Ningdong coalfield[J]. Journal of Arid Land Resources and Environment,2021,35(8):108−113.. doi: 10.13448/j.cnki.jalre.2021.221
    [5] 何兴东,高玉葆. 干旱区水力提升的生态作用[J]. 生态学报,2003,23(5):996−1002.

    HE Xingdong,GAO Yubao. Discussion on ecological role of hydraulic lift in arid region[J]. Acta Ecologica Sinica,2003,23(5):996−1002.
    [6] MULER A L,VAN ETTEN E J B,STOCK W D,et al. Can hydraulically redistributed water assist surrounding seedlings during summer drought?[J]. Oecologia,2018,187(3):625−641.. doi: 10.1007/s00442-018-4158-7
    [7] 毕银丽,郭晨,王坤. 煤矿区复垦土壤的生物改良研究进展[J]. 煤炭科学技术,2020,48(4):52−59.. doi: 10.13199/j.cnki.cst.2020.04.004

    BI Yinli,GUO Chen,WANG Kun. Research progress of biological improvement of reclaimed soil in coal mining area[J]. Coal Science and Technology,2020,48(4):52−59.. doi: 10.13199/j.cnki.cst.2020.04.004
    [8] YODER C K,NOWAK R S. Hydraulic lift among native plant species in the Mojave Desert[J]. Plant and Soil,1999,215:93−102.. doi: 10.1023/A:1004729232466
    [9] 毕银丽,解琳琳. 丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用[J]. 微生物学报,2021,61(1):58−67.. doi: 10.13343/j.cnki.wsxb.20200171

    BI Yinli,XIE Linlin. Functions of arbuscular mycorrhizal fungi and dark septate endophytes in ecological restoration[J]. Acta Microbiologica Sinica,2021,61(1):58−67.. doi: 10.13343/j.cnki.wsxb.20200171
    [10] JUMPPONEN A,TRAPPE J M. Dark septate endophytes:A review of facultative biotrophic root−colonizing fungi[J]. New Phytologist,1998,140(2):295−310.. doi: 10.1046/j.1469-8137.1998.00265.x
    [11] LIU Yan,WEI Xiaoli. Dark septate endophyte improves drought tolerance of Ormosia hosiei Hemsley & E. H. Wilson by modulating root morphology,ultrastructure,and the ratio of root hormones[J]. Forests,2019,10(10):830.. doi: 10.3390/f10100830
    [12] THOMAS A,YADAV B K,SIMUNEK J. Root water uptake under heterogeneous soil moisture conditions:An experimental study for unraveling compensatory root water uptake and hydraulic redistribution[J]. Plant and Soil,2020,457:421−435.. doi: 10.1007/s11104-020-04738-3
    [13] 于小娟,胡玉金,刘润进. 真菌与植物共生机制研究进展[J]. 微生物学杂志,2017,37(1):98−104.. doi: 10.3969/j.issn.1005-7021.2017.01.016

    YU Xiaojuan,HU Yujin,LIU Runjin. Advances in mechanism study of symbiosis between fungi and plants[J]. Journal of Microbiology,2017,37(1):98−104.. doi: 10.3969/j.issn.1005-7021.2017.01.016
    [14] SHENG Min,LALANDE R,HAMEL C,et al. Growth of corn roots and associated arbuscular mycorrhizae are affected by long−term tillage and phosphorus fertilization[J]. Agronomy Journal,2012,104(6):1672−1678.. doi: 10.2134/agronj2012.0153
    [15] 毕银丽,邹慧,彭超,等. 采煤沉陷对沙地土壤水分运移的影响[J]. 煤炭学报,2014,39(增刊2):490−496.. doi: 10.13225/j.cnki.jccs.2013.1902

    BI Yinli,ZOU Hui,PENG Chao,et al. Effects of mining subsidence on soil water movement in sandy area[J]. Journal of China Coal Society,2014,39(Sup.2):490−496.. doi: 10.13225/j.cnki.jccs.2013.1902
    [16] 殷齐琪,毕银丽,马少鹏,等. 接种AM真菌对模拟矿区排土场压实土壤柠条根系发育与养分吸收的影响[J]. 煤炭学报,2019,34(3):638−647.

    YIN Qiqi,BI Yinli,MA Shaopeng,et al. Effects of AMF on the root development and nutrient absorption of Caragana in simulated compacted soil in mining area[J]. Journal of China Coal Society,2019,34(3):638−647.
    [17] GAO Jia,SHI Jianguo,DONG Suotao,et al. Grain yield and root characteristics of summer maize (Zea mays L. ) under shade stress conditions[J]. Journal of Agronomy and Crop Science,2017,203(6):562−573.. doi: 10.1111/jac.12210
    [18] SURONO,NARISAWA K. The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth[J]. Fungal Ecology,2017,28:1−10.. doi: 10.1016/j.funeco.2017.04.001
    [19] JUMPPONEN A,MATTSON K G,TRAPPE J M. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil:Interactions with soil nitrogen and organic matter[J]. Mycorrhiza,1998,7(5):261−265.. doi: 10.1007/s005720050190
    [20] LI Xia, HE Chao, HE Xueli, et al. Dark septate endophytes improve the growth of host and non−host plants under drought stress through altered root development[J]. Plant and Soil, 2019, 439(1/2): 259–272.
    [21] DELLA MONICA I F,SAPARRAT M C N,GODEAS A M,et al. The co−existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes[J]. Fungal Ecology,2015,17:10−17.. doi: 10.1016/j.funeco.2015.04.004
    [22] LIU Yan,WEI Xiaoli. Dark septate endophyte improves the drought–stress resistance of Ormosia hosiei seedlings by altering leaf morphology and photosynthetic characteristics[J]. Plant Ecology,2021,222(7):761−771.. doi: 10.1007/s11258-021-01135-3
    [23] 胡田田,牛晓丽,漆栋良,等. 玉米初生根向水性诱导优化试验研究[J]. 生态学报,2015,35(6):1829−1836.

    HU Tiantian,NIU Xiaoli,QI Dongliang,et al. Optimizing hydrotropic response in the maize primary roots[J]. Acta Ecologica Sinica,2015,35(6):1829−1836.
    [24] BARRON–GAFFORD G A,SANCHEZ–CANETE E P,MINOR R L,et al. Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semi–arid savanna[J]. New Phytologist,2017,215(4):1451−1461.. doi: 10.1111/nph.14693
    [25] 张扬,沈玉芳,李世清. 施肥对干旱胁迫下夏玉米根系提水的调节作用研究[J]. 西北植物学报,2009,29(3):535−541.

    ZHANG Yang,SHEN Yufang,LI Shiqing. Regulation of different fertilizer treatments on hydraulic lift of summer maize under drought stress[J]. Acta Botanica Boreali−Occidentalia Sinica,2009,29(3):535−541.
    [26] SANTOS S G D,SILVA P R A D,GARCIA A C,et al. Dark septate endophyte decreases stress on rice plants[J]. Brazilian Journal of Microbiology,2017,48(2):333−341.. doi: 10.1016/j.bjm.2016.09.018
    [27] 王甜甜,田育红,吴秀臣,等. 菌根与植被生长:多变环境下的相互作用[J]. 生态学杂志,2021,40(12):4061−4068.. doi: 10.13292/j.1000-4890.202112.031

    WANG Tiantian,TIAN Yuhong,WU Xiuchen,et al. Mycorrhiza and vegetation growth:Interactions in a changing environment[J]. Chinese Journal of Ecology,2021,40(12):4061−4068.. doi: 10.13292/j.1000-4890.202112.031
    [28] 卢佳,邵光成,章坤,等. 水盐胁迫下根系提水作用对土壤盐分与番茄产量的影响[J]. 农业机械学报,2020,51(9):249−257.

    LU Jia,SHAO Guangcheng,ZHANG Kun,et al. Effects of root hydraulic lift on soil salt and tomato yield under water and salt stress[J]. Transactions of the Chinese Society of Agricultural Machinery,2020,51(9):249−257.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  20
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 修回日期:  2022-09-21
  • 刊出日期:  2022-12-25
  • 网络出版日期:  2022-12-02

目录

    /

    返回文章
    返回