Key technology and engineering demonstration for cascade utilization of gas in key coal mining areas of Shanxi Province, China
-
摘要:
山西重点煤矿区包括晋城、阳泉、西山、汾西、潞安等矿区,是“十三五”国家科技重大专项“山西重点煤矿区煤层气与煤炭协调开发示范工程”的主要实施地点。依托国家科技重大专项项目资助,研发了煤矿瓦斯梯级利用系列技术,并进行工程示范,引导山西重点煤矿区瓦斯抽采量与利用量由2015年的60.2亿m3和22.3亿m3提高至2020年的64.03亿m3和28.94亿m3,利用率由37%提升至45%,在保障煤矿安全开采的前提下极大地助力碳达峰碳中和目标的实现。梯级利用主要是根据甲烷浓度高低分别加以综合利用,对于甲烷体积分数≥30%的高浓度煤矿瓦斯,可以进行集输后按照效益最大化原则进行发电、民用、工业利用等。对于甲烷体积分数<30%的低浓度瓦斯,依据不同浓度瓦斯利用技术差异性及适应性,将低浓度瓦斯的浓度利用区间划分为4级:甲烷体积分数介于16%~30%的低浓度瓦斯可采用变压吸附技术,提纯后可使甲烷体积分数达到30%以上满足后续民用及集输等要求,该项技术已在晋城矿区成庄矿建设了处理能力为12 000 m3/h的示范装置;在有高浓度煤矿瓦斯的矿区也可利用掺混技术直接将甲烷体积分数提高至30%以上进行集输利用。甲烷体积分数介于9%~16%的低浓度瓦斯可采用就地发电技术,转化为电能后可自用或上网,该技术已在晋城矿区赵庄矿、胡底矿、长平矿等建设了示范装置。甲烷体积分数介于6%~9%的低浓度瓦斯可采用直燃技术,转化为热能后进行电、热、冷三联供,该技术已在成庄矿建设了示范装置。甲烷体积分数介于1%~6%的低浓度瓦斯可采用蓄热氧化与掺混技术,同样转化为热能后进行电、热、冷三联供,该技术已在华阳新材料科技集团有限公司(原阳泉煤业集团)一矿及五矿建设了示范装置。低浓度瓦斯梯级利用技术虽然在山西重点煤矿区进行了成功示范,但目前仍存在很多技术经济难题,在碳达峰碳中和目标下,亟需进行持续攻关并快速提高利用率。
Abstract:The key coal mining areas of Shanxi Province, including Jincheng, Yangquan, Xishan, Fenxi and Lu’an, are the main implementation sites of the “13th Five-Year” national science and technology major project “Demonstration Project of Coordinated Development of Coalbed Methane and Coal in Key Coal Mining Areas of Shanxi”. Relying on the high-end platform of the national science and technology major project, a series of technologies for cascade utilization of coal mine gas have been developed and demonstrated to guide the enhancement of gas drainage and utilization from 6.02 billion m3 and 2.23 billion m3 in 2015 to 6.403 billion m3 and 2.894 billion m3 in 2020 respectively, as well as the increasing of utilization rate from 37% to 45%, thereby greatly assisting to the realization of the goals of coal peaking and coal neutrality under the precondition of ensuring the safe mining of coal mine. Cascade utilization is mainly based on the comprehensive utilization of methane concentration of gas. Specifically, the high-concentration coal mine gas with the volume fraction of methane above 30% (including) can be used for power generation, civil and industrial utilization according to the principle of maximizing the benefits after gathering. For the low-concentration gas with the volume fraction of methane less than 30%, the utilization interval is divided into four levels according to the difference and adaptability of different gas utilization technologies. The low-concentration gas with the volume fraction of methane of 16%‒30% could be purified with the pressure swing adsorption technology, so that the volume fraction of methane reaches 30% or more, satisfying the subsequent requirements of civil utilization and gathering. In terms of this technology, a demonstration device with a processing capacity of 12 000 m³/h has been built in Chengzhuang Mine of Jincheng mining area. In the mining area with high-concentration coal mine gas, the mixing technology can also be used to directly increase the concentration of methane to more than 30% for gathering. The low-concentration gas with the volume fraction of methane ranging from 9% to 16% can be converted into electricity locally for local-use or access to the grid, for which the demonstration devices have been constructed in Zhaozhuang Coal Mine, Hudi Coal Mine and Changping Coal Mine in Jincheng mining area. The low-concentration gas with the volume fraction of methane within 6%‒9% can be converted into heat by direct combustion technology for the combined supply of electricity, heat and cold, for which the demonstration device has been built in Chengzhuang Coal Mine. In addition, the low-concentration gas with the volume fraction of gas in the range of 1% to 6% can be converted into heat by regenerative oxidation technology for the combined supply of electricity, heat and cold, for which the demonstration device is built in No. 1 Coal Mine and No. 5 Coal Mine of Huayang New Material Technology Group Co., Ltd. (the former Yangquan Coal Industry Group). The cascade utilization technology of low-concentration gas, successfully demonstrated in the key mining areas of Shanxi, still has many technical and economic challenges at present. Therefore, it is urgent to perform the research continuously and rapidly improve the utilization rate under the goal of coal peaking and coal neutrality.
-
-
表 1 主要技术指标
Table 1 Main technical indicators
主要指标 取值 取值依据 原料气处理量/(m3·h−1) 420 抽采井平均值 原料气抽采压力/MPa −0.03 兼顾抽采量和抽采浓度 原料气温度 常温 实际工况 产品气压力/MPa 0.15 集输管网压力 产品气温度/℃ 40~60 实际工况 产品气流量/(m3·h−1) 200 实际工况 甲烷回收率/% ≥70 兼顾效率与经济性 产品气甲烷体积分数/% ≥65 兼顾效率与经济性 表 2 直燃工艺主要技术指标
Table 2 Main technical indicators of direct combustion
序号 参数 金属纤维燃烧器 1 热效率/% 90 2 甲烷氧化率/% 98 3 氮氧化物排放量/(mg·m−3) 30 4 甲烷体积分数/% 5~30 表 3 撬装提纯装置年运行成本与收益
Table 3 Annual cost and income of skid-mounted purification device
运行成本/(万元·a−1) 收益/(万元·a−1) 电费 资产折旧 人员工资 保养费用 产气销售 103.7 18 21.6 6 259.2 -
[1] 张文宏. 贵州盘江矿区煤矿瓦斯(煤层气)利用研究[D]. 西安: 西安科技大学, 2020. ZHANG Wenhong. Study on utilization technology of coal mine gas (coalbed methane) in Panjiang mining area of Guizhou Province[D]. Xi’an: Xi’an University of Science and Technology, 2020.
[2] 刘炯天. 关于我国煤炭能源低碳发展的思考[J]. 中国矿业大学学报(社会科学版),2011,13(1):5−12. LIU Jiongtian. Reflection on low–carbon development of coal energy in China[J]. Journal of China University of Mining & Technology (Social Sciences),2011,13(1):5−12.
[3] 刘见中,沈春明,雷毅,等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报,2017,42(5):1221−1229. LIU Jianzhong,SHEN Chunming,LEI Yi,et al. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society,2017,42(5):1221−1229.
[4] 申宝宏,刘见中,雷毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4. DOI: 10.13199/j.cnki.cst.2015.02.001 SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4. DOI: 10.13199/j.cnki.cst.2015.02.001
[5] 朱英战. 阳泉矿区矿井煤层气利用发展现状[J]. 煤炭科学技术,2013,41(10):70−72. ZHU Yingzhan. Development status of mine coalbed methane utilization in Yangquan mining area[J]. Coal Science and Technology,2013,41(10):70−72.
[6] 蒋孝兵,谢海英. 煤层气利用新方案[J]. 天然气工业,2006,26(10):144−146. DOI: 10.3321/j.issn:1000-0976.2006.10.045 JIANG Xiaobing,XIE Haiying. New proposal for coalbed methane utilization[J]. Natural Gas Industry,2006,26(10):144−146. DOI: 10.3321/j.issn:1000-0976.2006.10.045
[7] 林雪峰,刘胜,邸志强. 我国煤层气利用概述[J]. 煤炭技术,2010,29(4):1−3. LIN Xuefeng,LIU Sheng,DI Zhiqiang. Summarize of China coal–bed methane utilization[J]. Coal Technology,2010,29(4):1−3.
[8] 姚成林. 煤层气梯级利用技术探讨[J]. 矿业安全与环保,2016,43(4):94−97. DOI: 10.3969/j.issn.1008-4495.2016.04.025 YAO Chenglin. Discussion on cascade utilization technology for coal–bed methane[J]. Mining Safety & Environmental Protection,2016,43(4):94−97. DOI: 10.3969/j.issn.1008-4495.2016.04.025
[9] 熊云威. 煤矿区低浓度煤层气梯级利用技术研究进展[J]. 矿业安全与环保,2018,45(4):121−124. DOI: 10.3969/j.issn.1008-4495.2018.04.028 XIONG Yunwei. Research progress on the cascade utilization technology of low concentration CBM in coal mine area[J]. Mining Safety & Environmental Protection,2018,45(4):121−124. DOI: 10.3969/j.issn.1008-4495.2018.04.028
[10] 谭杰. 我国煤矿瓦斯综合利用发展现状及建议[J]. 煤炭加工与综合利用,2018(8):59−61. DOI: 10.16200/j.cnki.11-2627/td.2018.08.013 TAN Jie. Present situation and suggestions of comprehensive utilization of coal mine gas in China[J]. Coal Processing & Comprehensive Utilization,2018(8):59−61. DOI: 10.16200/j.cnki.11-2627/td.2018.08.013
[11] 陈金华. 低浓度含氧煤层气提浓技术研究进展[J]. 矿业安全与环保,2017,44(1):94−97. DOI: 10.3969/j.issn.1008-4495.2017.01.024 CHEN Jinhua. Study progress of concentrating technology of low−concentration oxygen−containing coal−bed methane[J]. Mining Safety & Environmental Protection,2017,44(1):94−97. DOI: 10.3969/j.issn.1008-4495.2017.01.024
[12] 张增平. 煤矿低浓瓦斯提纯技术及经济性分析[J]. 中国煤层气,2010,7(1):42−44. DOI: 10.3969/j.issn.1672-3074.2010.01.011 ZHANG Zengping. Purification technology using coal mine methane with low concentration and its economic analysis[J]. China Coalbed Methane,2010,7(1):42−44. DOI: 10.3969/j.issn.1672-3074.2010.01.011
[13] 辜敏,鲜学福. 矿井抽放煤层气中甲烷的变压吸附提浓[J]. 重庆大学学报(自然科学版),2007,30(4):29−33. GU Min,XIAN Xuefu. Pressure sweep adsorption processes for the concentration of methane from coalbed gas extracted[J]. Journal of Chongqing University (Natural Science Edition),2007,30(4):29−33.
[14] 李超,郭向前,胡胜勇,等. 低浓度煤层气分布式提纯系统的研制与应用[J]. 煤矿安全,2018,49(4):85−88. DOI: 10.13347/j.cnki.mkaq.2018.04.022 LI Chao,GUO Xiangqian,HU Shengyong,et al. Development and application of distributed purification equipment for low concentration coalbed methane[J]. Safety in Coal Mines,2018,49(4):85−88. DOI: 10.13347/j.cnki.mkaq.2018.04.022
[15] HU Shengyong,ZHANG Ao,FENG Guorui,et al. Methane extraction from abandoned mines by surface vertical wells:A case study in China[J]. Geofluids,2018(1):1−9.
[16] 董国伟. 东林煤矿煤与瓦斯突出灾害预测指标研究[J]. 煤炭科学技术,2012,40(8):40−42. DOI: 10.13199/j.cst.2012.08.43.donggw.016 DONG Guowei. Study on predicted indexes of coal and gas outburst disaster in Donglin mine[J]. Coal Science and Technology,2012,40(8):40−42. DOI: 10.13199/j.cst.2012.08.43.donggw.016
[17] 潘俊锋,毛德兵,蓝航,等. 我国煤矿冲击地压防治技术研究现状及展望[J]. 煤炭科学技术,2013,41(6):21−25. DOI: 10.13199/j.cst.2013.06.27.panjf.012 PAN Junfeng,MAO Debing,LAN Hang,et al. Study status and prospects of mine pressure bumping control technology in China[J]. Coal Science and Technology,2013,41(6):21−25. DOI: 10.13199/j.cst.2013.06.27.panjf.012
[18] 王雪龙. 基于声发射的煤与瓦斯突出实验研究[D]. 太原: 太原理工大学, 2015. WANG Xuelong. Based on the acoustic emission of coal and gas outburst experimental study[D]. Taiyuan: Taiyuan University of Technology, 2015.
[19] 邱俊炳. 井工煤矿动力灾害源探测技术研究[D]. 包头: 内蒙古科技大学, 2012. QIU Junbing. Study on detecting technique for underground coal mine dynamic disasters source[D]. Baotou: Inner Mongolia University of Science and Technology, 2012.
[20] 吴自立. AE信号参数预测预报煤(岩)与瓦斯突出危险性的进展及展望[J]. 矿业安全与环保,2005,32(1):27−29. DOI: 10.3969/j.issn.1008-4495.2005.01.011 WU Zili. Progress and prospect of AE signal parameter for predicting coal and gas outburst hazard[J]. Mining Safety & Environmental Protection,2005,32(1):27−29. DOI: 10.3969/j.issn.1008-4495.2005.01.011
[21] 赵旭生,董银生,岳超平. 煤与瓦斯突出预测敏感指标及其临界值的确定方法[J]. 矿业安全与环保,2007,34(3):28−30. DOI: 10.3969/j.issn.1008-4495.2007.03.009 ZHAO Xusheng,DONG Yinsheng,YUE Chaoping. Determination method for sensitivity index and critical value of coal and gas outburst[J]. Mining Safety & Environmental Protection,2007,34(3):28−30. DOI: 10.3969/j.issn.1008-4495.2007.03.009
[22] 康建东,兰波,邹维峰. 煤矿五床式乏风瓦斯蓄热氧化装置设计与应用[J]. 煤炭科学技术,2015,43(2):136−139. DOI: 10.13199/j.cnki.cst.2015.02.031 KANG Jiandong,LAN Bo,ZOU Weifeng. Design and application on five–bed type thermal accumulation oxidized device of mine ventilation air methane[J]. Coal Science and Technology,2015,43(2):136−139. DOI: 10.13199/j.cnki.cst.2015.02.031
[23] 高鹏飞,孙东玲,霍春秀,等. 超低浓度瓦斯蓄热氧化利用技术研究进展[J]. 煤炭科学技术,2018,46(12):67−73. GAO Pengfei,SUN Dongling,HUO Chunxiu,et al. Study progress on thermal oxidized utilization technology of ultra low concentration gas[J]. Coal Science and Technology,2018,46(12):67−73.
[24] 王刚,杨曙光,张寿平,等. 新疆煤矿区瓦斯抽采利用技术现状及展望[J]. 煤炭科学技术,2020,48(3):154−161. WANG Gang,YANG Shuguang,ZHANG Shouping,et al. Status and prospect of coal mine gas drainage and utilization technology in Xinjiang coal mining area[J]. Coal Science and Technology,2020,48(3):154−161.