留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙陕接壤区浅埋煤层矿井水水化学特征及来源分析

王昱同 王皓 王甜甜 薛建坤 尚宏波 周振方

王昱同,王皓,王甜甜,等. 蒙陕接壤区浅埋煤层矿井水水化学特征及来源分析[J]. 煤田地质与勘探,2023,51(4):85−94. doi: 10.12363/issn.1001-1986.22.07.0553
引用本文: 王昱同,王皓,王甜甜,等. 蒙陕接壤区浅埋煤层矿井水水化学特征及来源分析[J]. 煤田地质与勘探,2023,51(4):85−94. doi: 10.12363/issn.1001-1986.22.07.0553
WANG Yutong,WANG Hao,WANG Tiantian,et al. Hydrochemical characteristics and source analysis of mine water in shallow coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration,2023,51(4):85−94. doi: 10.12363/issn.1001-1986.22.07.0553
Citation: WANG Yutong,WANG Hao,WANG Tiantian,et al. Hydrochemical characteristics and source analysis of mine water in shallow coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration,2023,51(4):85−94. doi: 10.12363/issn.1001-1986.22.07.0553

蒙陕接壤区浅埋煤层矿井水水化学特征及来源分析

doi: 10.12363/issn.1001-1986.22.07.0553
基金项目: 陕西省重点研发计划项目(2022SF-046);陕西省自然科学基础研究计划项目(2023-JC-QN-0291,2022JQ-471)
详细信息
    第一作者:

    王昱同,1996年生,男,陕西西安人,硕士研究生,从事矿山水害防治研究. E-mail:561288609@qq.com

    通信作者:

    王皓,1981年生,男,江苏连云港人,博士,研究员,博士生导师,从事煤矿水害防治及水资源保护技术的研发和推广工作. E-mail:wanghao@cctegxian.com

  • 中图分类号: TD741

Hydrochemical characteristics and source analysis of mine water in shallow coal seams in Shaanxi and Inner Mongolia contiguous area

  • 摘要: 为研究蒙陕接壤区浅埋煤层开采下矿井水水化学特征与来源,通过采集研究区内的矿井水、不同含水层地下水及地表水样,综合利用水化学特征研究、数理统计、离子比例系数法以及氢氧同位素,探究该区矿井水水化学特征及其形成作用。基于此,对研究区矿井水的主要来源进行了识别。结果表明,矿井水与第四系萨拉乌苏组、侏罗系直罗组和延安组地下水水力联系紧密。矿井水主要离子形成受水−岩作用影响,主要阴阳离子来源于硅酸盐矿物与方解石的溶滤作用;受到反向阳离子交换作用影响,使矿井水中Na+含量高于浅部地下水;混合作用对矿井水水化学成分形成影响较小。矿井水受延安组、直罗组地下水与萨拉乌苏组地下水共同补给,三者在矿井水补给水源中所占比例分别为86.39%、1.59%与12.02%。研究成果可为该区的矿井水害防治与水资源处理利用提供依据。

     

  • 图  研究区地质柱状图

    Fig. 1  Geological histogram of the study area

    图  研究区矿井水采样点分布

    Fig. 2  Distribution of mine water sampling sites in the study area

    图  研究区地表水及地下水Piper三线图

    Fig. 3  Piper diagram of surface water and groundwater in the study area

    图  研究区地表水及地下水Gibbs图

    Fig. 4  Gibbs diagram of surface water and groundwater in the study area

    图  研究区地下水离子比例系数图

    Fig. 5  Groundwater ion ratio in the study area

    图  CAI-1与CAI-2比例关系

    Fig. 6  Relationship between CAI-1 and CAI-2

    图  聚类分析结果

    Fig. 7  Results of cluster analysis

    图  研究区δ2H与δ18O关系

    Fig. 8  Relationship between δ2H and δ18O in study area

    表  1  研究区含水层概况

    Table  1  The aquifer data of the study area

    含水层单位涌水量/(L·m−1·s−1)富水性含水层厚度/m
    第四系萨拉乌苏组含水层(Q3s)0.100 00~2.110 00中等−强富水性10.00~20.00
    侏罗系直罗组含水层(J2z)0.004 19~0.009 03弱−极弱富水性0~81.01
    侏罗系延安组含水层(J1-2y)0.000 86~0.012 12弱富水性172.18
    烧变岩裂隙水层段4.614 60强富水性2.70~36.98
    下载: 导出CSV

    表  2  研究区水样水质全分析结果

    Table  2  Results of groundwater hydrochemical analysis of the study area

    取样层位离子质量浓度/(mg·L−1)TDS/(mg·L−1)pH
    K++Na+Ca2+Mg2+ClSO4 2−HCO3
    地表水 8.69~218.20/
    45.29
    9.87~69.19/
    40.05
    3.65~43.76/
    15.16
    7.61~116.35/
    25.22
    0.01~328.78/
    62.54
    74.48~240.37/
    166.77
    146.00~1034.11/
    348.53
    7.36~8.74/
    8.07
    萨拉乌苏组 8.47~44.40/
    17.62
    35.50~65.13/
    55.98
    6.08~20.18/
    8.98
    6.56~21.76/
    9.81
    7.09~20.20/
    10.49
    179.60~271.54/
    223.69
    204.00~276.00/
    236.69
    7.20~7.94/
    7.63
    直罗组 1.61~34.82/
    18.64
    30.06~70.54/
    45.73
    0.97~22.96/
    13.41
    2.06~27.30/
    11.08
    0.01~30.00/
    16.25
    176.73~232.20/
    202.39
    161.00~446.00/
    262.33
    7.18~8.16/
    7.74
    延安组 60.74~233.26/
    151.78
    11.02~81.24/
    27.11
    0.27~13.13/
    4.52
    10.00~99.40/
    56.34
    20.00~226.00/
    87.41
    73.21~558.06/
    266.61
    167.00~920.00/
    480.57
    7.64~10.87/
    8.66
    矿井水 15.75~288.69/
    108.72
    6.01~269.00/
    62.43
    1.22~70.50/
    16.89
    1.59~162.00/
    10.29
    0.02~1 250.00/
    136.30
    62.12~940.00/
    365.06
    228.00~1 816.00/
    678.53
    7.64~8.69/
    8.17
    注:8.69~218.20/45.29表示最小~最大值/平均值,其他数据同。
    下载: 导出CSV

    表  3  主成分解释方差率

    Table  3  Explained variance rates of the principal components

    主成分因子特征值贡献率/%累计贡献率/%
    12.6043.3443.34
    21.6827.9971.33
    31.0317.2088.53
    下载: 导出CSV

    表  4  预测样本的判别结果

    Table  4  Discriminant results of the testing samples

    水样编号Y1Y2Y3预测类别
    40.77−1.34−0.05
    6−0.22−0.810.22
    7−1.212.690.41
    8−0.360.10−0.2
    9−0.66−0.660.11
    10−1.281.620.25
    11−0.910.790.29
    12−0.69−0.120.07
    13−0.843.490.76
    14−0.29−1.530.10
    15−0.940.800.33
    16−0.71−0.510.05
    170.730.59−0.28
    18−0.61−1.77−0.16
    190.391.391.08
    下载: 导出CSV

    表  5  研究区氢氧同位素特征

    Table  5  Hydrogen and oxygen isotope characteristics in study area

    取样层位δ18O/‰δ2H/‰
    地表水−10.28~−7.06/−8.44−77.30~−56.30/−65.64
    萨拉乌苏组−8.89~−7.90/−8.36−69.80~−59.90/−65.23
    直罗组−9.24~−8.44/−8.81−71.93~−65.47/−68.82
    延安组−10.15~−9.16/−9.75−75.32~−67.50/−71.80
    矿井水−11.95~−9.83/−10.79−79.02~−66.49/−73.24
    下载: 导出CSV

    表  6  研究区矿井水水源组成

    Table  6  Water source composition for different mine water samples

    取样点位延安组补给
    比例/%
    直罗组补给
    比例/%
    萨拉乌苏组补给
    比例/%
    187.901.5210.58
    283.472.6813.85
    380.021.7918.19
    489.341.029.64
    591.570.547.89
    684.362.0213.62
    788.031.5710.40
    下载: 导出CSV
  • [1] 钱鸣高. 煤炭的科学开采[J]. 煤炭学报,2010,35(4):529−534.. doi: 10.13225/j.cnki.jccs.2010.04.007

    QIAN Minggao. On sustainable coal mining in China[J]. Journal of China Coal Society,2010,35(4):529−534.. doi: 10.13225/j.cnki.jccs.2010.04.007
    [2] 何绪文,杨静,邵立南,等. 我国矿井水资源化利用存在的问题与解决对策[J]. 煤炭学报,2008,33(1):63−66.. doi: 10.3321/j.issn:0253-9993.2008.01.014

    HE Xuwen,YANG Jing,SHAO Linan,et al. Problem and counter measure of mine water resource regeneration in China[J]. Journal of China Coal Society,2008,33(1):63−66.. doi: 10.3321/j.issn:0253-9993.2008.01.014
    [3] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.

    WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
    [4] 孙亚军,陈歌,徐智敏,等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报,2020,45(1):304−316.

    SUN Yajun,CHEN Ge,XU Zhimin,et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304−316.
    [5] 王德潜,刘祖植,尹立河. 鄂尔多斯盆地水文地质特征及地下水系统分析[J]. 第四纪研究,2005,25(1):6−14.. doi: 10.3321/j.issn:1001-7410.2005.01.002

    WANG Deqian,LIU Zuzhi,YIN Lihe. Hydrogeological characteristics and groundwater systems of the Ordos Basin[J]. Quaternary Sciences,2005,25(1):6−14.. doi: 10.3321/j.issn:1001-7410.2005.01.002
    [6] 石效卷,李璐,张涛. 水十条:对《水污染防治行动计划》的解读[J]. 环境保护科学,2015,41(3):1−3.. doi: 10.3969/j.issn.1004-6216.2015.03.001

    SHI Xiaojuan,LI Lu,ZHANG Tao. Water pollution control action plan,a realistic and pragmatic plan:An interpretation of water pollution control action plan[J]. Environmental Protection Science,2015,41(3):1−3.. doi: 10.3969/j.issn.1004-6216.2015.03.001
    [7] 何绪文,李福勤. 煤矿矿井水处理新技术及发展趋势[J]. 煤炭科学技术,2010,38(11):17−22.. doi: 10.13199/j.cst.2010.11.22.hexw.001

    HE Xuwen,LI Fuqin. New technology and development tendency of mine water treatment[J]. Coal Science and Technology,2010,38(11):17−22.. doi: 10.13199/j.cst.2010.11.22.hexw.001
    [8] 钱会, 马致远. 水文地球化学[M]. 北京: 地质出版社, 2005.
    [9] 贾秀梅,孙继朝. 大柳塔矿区地下水形成模式研究[J]. 勘察科学技术,2001(6):3−6.. doi: 10.3969/j.issn.1001-3946.2001.06.001

    JIA Xiumei,SUN Jichao. Groundwater forming model research for Daliuta mining area[J]. Site Investigation Science and Technology,2001(6):3−6.. doi: 10.3969/j.issn.1001-3946.2001.06.001
    [10] 王腾飞,蔺文豪,秦哲,等. 不同水化学条件下循环侵水砂岩劣化规律研究[J]. 地质与勘探,2022,58(6):1281−1291.

    WANG Tengfei,LIN Wenhao,QIN Zhe,et al. Deterioration law of sandstone with water invasion cycle under different hydrochemical conditions[J]. Geology and Exploration,2022,58(6):1281−1291.
    [11] 侯泽明,黄磊,韩萱,等. 采煤驱动下神东矿区地下水化学特征及成因[J]. 中国环境科学,2022,42(5):2250−2259.. doi: 10.3969/j.issn.1000-6923.2022.05.030

    HOU Zeming,HUANG Lei,HAN Xuan,et al. Hydrochemical characteristics and controlling factors of groundwater driven by coal mining in Shendong mining area[J]. China Environmental Science,2022,42(5):2250−2259.. doi: 10.3969/j.issn.1000-6923.2022.05.030
    [12] 郭洋楠,杨俊哲,张政,等. 神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水–岩作用机制[J]. 煤炭学报,2021,46(增刊2):948−959.

    GUO Yangnan,YANG Junzhe,ZHANG Zheng,et al. Hydrogen and oxygen isotope characteristics of mine water in Shendong Mine Area and water–rock reactions mechanism of the formation of high–fluoride mine water[J]. Journal of China Coal Society,2021,46(Sup.2):948−959.
    [13] 郝春明,张伟,何瑞敏,等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报,2021,46(6):1966−1977.. doi: 10.13225/j.cnki.jccs.ST21.0160

    HAO Chunming,ZHANG Wei,HE Ruimin,et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal−mining district[J]. Journal of China Coal Society,2021,46(6):1966−1977.. doi: 10.13225/j.cnki.jccs.ST21.0160
    [14] 薛禹群. 中国地下水数值模拟的现状与展望[J]. 高校地质学报,2010,16(1):1−6.. doi: 10.3969/j.issn.1006-7493.2010.01.001

    XUE Yuqun. Present situation and prospect of groundwater numerical simulation in China[J]. Geological Journal of China Universities,2010,16(1):1−6.. doi: 10.3969/j.issn.1006-7493.2010.01.001
    [15] 李义连,王焰新,周来茹,等. 地下水矿物饱和度的水文地球化学模拟分析:以娘子关泉域岩溶水为例[J]. 地质科技情报,2002,21(1):32−36.

    LI Yilian,WANG Yanxin,ZHOU Lairu,et al. Hydrogeochemical modeling on saturation of minerals in groundwater:A case study at Niangziguan,northern China[J]. Geological Science and Technology Information,2002,21(1):32−36.
    [16] 郭巧玲,熊新芝,姜景瑞. 窟野河流域地表水–地下水的水化学特征[J]. 环境化学,2016,35(7):1372−1380.. doi: 10.7524/j.issn.0254-6108.2016.07.2015110301

    GUO Qiaoling,XIONG Xinzhi,JIANG Jingrui. Hydrochemical characteristics of surface and ground water in the Kuye River Basin[J]. Environmental Chemistry,2016,35(7):1372−1380.. doi: 10.7524/j.issn.0254-6108.2016.07.2015110301
    [17] 王炳强,白喜庆,吴振岭. 基于水化学特征的聚类法判别矿井突水水源[J]. 河北工程大学学报(自然科学版),2015,32(3):101−104.

    WANG Bingqiang,BAI Xiqing,WU Zhenling. Prediction of mine water inrush sources based on cluster analysis of hydrogeochemical features[J]. Journal of Hebei University of Engineering (Natural Science Edition),2015,32(3):101−104.
    [18] 郭钰颖,吕智超,王广才,等. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探,2016,44(6):101−105.. doi: 10.3969/j.issn.1001-1986.2016.06.019

    GUO Yuying,LYU Zhichao,WANG Guangcai,et al. Hydrogeochemical simulation of groundwater in eastern Fengfeng mining area[J]. Coal Geology & Exploration,2016,44(6):101−105.. doi: 10.3969/j.issn.1001-1986.2016.06.019
    [19] 杨建,刘洋,刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全,2018,49(4):34−37.

    YANG Jian,LIU Yang,LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines,2018,49(4):34−37.
    [20] 范钢伟,张东升,马立强. 神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J]. 中国矿业大学学报,2011,40(2):196−201.

    FAN Gangwei,ZHANG Dongsheng,MA Liqiang. Overburden movement and fracture distribution induced by longwall mining of the shallow coal seam in the Shendong Coalfield[J]. Journal of China University of Mining & Technology,2011,40(2):196−201.
    [21] 刘基. 呼吉尔特矿区深埋含水层水文地球化学特征及其指示意义[J]. 干旱区资源与环境,2021,35(1):154−159.

    LIU Ji. Hydrogeochemical characteristics of deep buried aquifer in Hujierte mining area and its implications[J]. Journal of Arid Land Resources and Environment,2021,35(1):154−159.
    [22] 王瑞久. 三线图解及其水文地质解释[J]. 工程勘察,1983(6):6−11.

    WANG Ruijiu. Three–line diagram and its hydrogeological interpretation[J]. Geotechnical Investigation & Surveying,1983(6):6−11.
    [23] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science,1970,170(3962):795−840.
    [24] 王珺瑜,王家乐,靳孟贵. 济南泉域岩溶水水化学特征及其成因[J]. 地球科学,2017,42(5):821−831.

    WANG Junyu,WANG Jiale,JIN Menggui. Hydrochemical characteristics and formation causes of karst water in Jinan Spring Catchment[J]. Earth Science,2017,42(5):821−831.
    [25] 刘基,高敏,靳德武,等. 榆神矿区地表水水化学特征及其影响因素分析[J]. 煤炭科学技术,2020,48(7):354−361.. doi: 10.13199/j.cnki.cst.2020.07.040

    LIU Ji,GAO Min,JIN Dewu,et al. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen mining area[J]. Coal Science and Technology,2020,48(7):354−361.. doi: 10.13199/j.cnki.cst.2020.07.040
    [26] SCHOELLER H. Qualitative evaluation of groundwater resources:Methods and techniques of groundwater investigation and development[J]. Water Research,1965,33:5483−5516.
    [27] 柳富田. 基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究[D]. 长春: 吉林大学, 2008.

    LIU Futian. Research on groundwater circulation and hydrochemical transport in the northern part of Ordos Cretaceous Basin based on isotope technology[D]. Changchun: Jilin University, 2008.
    [28] 康健,王振荣,庞乃勇. 神东矿区水害类型分析及其防治对策[J]. 煤炭科学技术,2015,43(增刊2):155−157.

    KANG Jian,WANG Zhenrong,PANG Naiyong. Analysis of water disaster type and prevention counter measures in Shendong mine area[J]. Coal Science and Technology,2015,43(Sup.2):155−157.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  18
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2023-03-06
  • 刊出日期:  2023-04-25
  • 网络出版日期:  2023-04-21

目录

    /

    返回文章
    返回