留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河流域九省区废弃矿井抽水蓄能利用潜力评估

卞正富 朱超斌 周跃进 徐雨农

卞正富,朱超斌,周跃进,等. 黄河流域九省区废弃矿井抽水蓄能利用潜力评估[J]. 煤田地质与勘探,2022,50(12):51−64. doi: 10.12363/issn.1001-1986.22.06.0460
引用本文: 卞正富,朱超斌,周跃进,等. 黄河流域九省区废弃矿井抽水蓄能利用潜力评估[J]. 煤田地质与勘探,2022,50(12):51−64. doi: 10.12363/issn.1001-1986.22.06.0460
BIAN Zhengfu,ZHU Chaobin,ZHOU Yuejin,et al. Evaluation on potential of using abandoned mines for pumped storage in nine provinces of Yellow River Basin[J]. Coal Geology & Exploration,2022,50(12):51−64. doi: 10.12363/issn.1001-1986.22.06.0460
Citation: BIAN Zhengfu,ZHU Chaobin,ZHOU Yuejin,et al. Evaluation on potential of using abandoned mines for pumped storage in nine provinces of Yellow River Basin[J]. Coal Geology & Exploration,2022,50(12):51−64. doi: 10.12363/issn.1001-1986.22.06.0460

黄河流域九省区废弃矿井抽水蓄能利用潜力评估

doi: 10.12363/issn.1001-1986.22.06.0460
基金项目: 国家自然科学基金国际(地区)合作与交流资助项目(52061135111)
详细信息
    第一作者:

    卞正富,1965年生,男,江苏建湖人,博士,教授,博士生导师,从事矿区土地复垦与生态重建、地下空间利用的研究工作.E-mail:zfbian@cumt.edu.cn

  • 中图分类号: TD74;TV743

Evaluation on potential of using abandoned mines for pumped storage in nine provinces of Yellow River Basin

  • 摘要: 针对我国关闭矿井资源利用率低、蓄电储能需求日益增长的问题,废弃矿井抽水蓄能技术是实现资源二次开发利用,提升电网调峰能力的有效手段。基于废弃矿井抽水蓄能电站工作原理与发展现状,提出在黄河流域九省区利用废弃矿井建设抽水蓄能电站的半地下式、全地下式2种模式。通过综合考虑空间、地质、水文、社会、经济与资源等影响因素,提出废弃矿井抽水蓄能电站选址评价指标体系,并进行黄河流域废弃矿井抽水蓄能电站实例分析。基于2016—2020年黄河流域九省区的废弃煤矿资料,利用废弃矿井抽水蓄能电站静态效益与动态效益计算方法,定量评估黄河流域九省区废弃煤矿抽水蓄能电站建设的开发潜力。结果表明:(1) 黄河流域九省区能源资源丰富,现阶段满足电力供应需求,但火电仍是电力供应主体且水电发展进入瓶颈阶段;(2) 影响废弃矿井抽水蓄能电站选址的重要因素为巷道空间体积、上下水库水位差、巷道围岩稳定性、巷道围岩渗透率与地下水循环特征;(3) 由黄河流域废弃矿井抽水蓄能电站实例分析可知,其发电效率可达到75.7%,可媲美常规抽水蓄能电站;(4) 2016—2020年黄河流域九省区废弃煤矿累计有效可利用井巷空间为4.7×107 m3,依据132座废弃矿井基本情况,从统计学角度估算出废弃矿井抽水蓄能电站可利用井巷空间为1.34×107 m3,利用其建设抽水蓄能电站年发电量可达3.78×109 kW·h,可满足2021年黄河流域九省区28.4%的弃风、弃光电量的消纳需求,每年直接经济效益约达21.2亿元。综上表明,黄河流域九省区废弃矿井抽水蓄能利用具有可观的发展前景。

     

  • 图  废弃矿井抽水蓄能电站建设模式

    Fig. 1  Construction modes of pumped storage power plant using abandoned mine

    图  2016—2020年黄河流域九省区电力发展情况

    Fig. 2  Electricity development in nine provinces of Yellow River Basin in 2016—2020

    图  废弃矿井抽水蓄能电站选址要素

    Fig. 3  Factors for site selection of pumped storage power plant using abandoned mine

    图  黄河流域某废矿废井全地下式抽水蓄能电站设计

    Fig. 4  Design of full-underground pumped storage power plant of an abandoned mine in Yellow River Basin

    图  2016—2020年黄河流域九省区关闭煤矿的井巷可利用地下空间分布(单位:万m3)

    Fig. 5  Distribution of available underground shaft and drift space of closed coal mines in nine provinces of Yellow River Basin from 2016 to 2020 (unit: 10 000 m3)

    图  黄河流域九省区部分废弃煤矿调研情况

    Fig. 6  Investigation on some abandoned coal mines in nine provinces of Yellow River Basin

    图  2016—2020黄河流域九省区废弃煤矿抽水蓄能发电量

    Fig. 7  Power generation of pumped storage power plant using abandoned coal mines in nine provinces of Yellow River Basin

    表  1  国外部分废弃矿井抽水蓄能电站工程设计参数[23]

    Table  1  Engineering design parameters of some pumped storage power plants using abandoned mines abroad[23]

    电站名称类型水库巷道长/m水头/m库容/103 m3功率/MW储能容量/(MW·h)
    西班牙Asturian发电站半地下5 700300~60017023.52141
    南非Fast West Rand发电站全地下67 0001 200/1 5001 000抽955/发1 2306 800
    德国Prosper-Haniel发电站半地下15 500560600200820
    德国Grund ore mine发电站全地下25 000700240~260100400
    下载: 导出CSV

    表  2  2020年黄河流域九省区主要能源矿产储量情况

    Table  2  Main energy mineral reserves in the nine provinces of Yellow River Basin in 2020

    省/自治区煤炭/亿t石油/万t天然气/亿m3
    青海2.268 251.851 055.32
    四川26.66555.4015 274.98
    甘肃15.3139 560.97588.00
    宁夏35.014 670.51280.67
    内蒙古194.476 676.9110 123.53
    陕西293.9036 812.8311 096.45
    山西507.2501 402.04
    河南33.653 022.2462.82
    山东41.3225 493.92343.52
    合计1 149.83125 044.6340 227.33
    全国1 622.88361 885.7562 665.78
    下载: 导出CSV

    表  3  2016—2020年黄河流域九省区关闭煤矿情况

    Table  3  Closed coal mines in the nine provinces of Yellow River Basin from 2016 to 2020

    省/自治区不同产能规模/(万t·a−1)合计
    (0,30](30,120)[120,500]
    数量规模数量规模数量规模数量规模
    青海1916800112020288
    四川4474 9251184011504595 915
    甘肃929658435001001 400
    宁夏31581138233617472 011
    内蒙古411 230221 2255660683 085
    陕西1162 457321 89071 2501555 597
    山西33894804 965255 03013810 889
    河南2083 841291 56159002426 302
    山东51969291 5355905853 409
    总计1 03816 03022413 274529 6321 31438 896
      注:数据统计来源,2016—2020年黄河流域九省区煤炭行业化解过剩产能关闭煤矿名单,关停煤矿不计入。
    下载: 导出CSV

    表  4  一致性检验结果

    Table  4  Consistency test results

    专家一致性检验判断矩阵
    A-BB1-CB2-CB3-CB4-CB5-CB6-C
    专家1λmax6.015 94.061 84.068 34.166 76.211 83.009 23.094 8
    CR0.002 50.023 10.023 90.062 50.033 60.008 90.091 1
    专家2λmax6.093 94.089 04.045 84.191 66.273 63.018 33.005 5
    CR0.014 90.033 30.017 10.071 80.043 40.017 60.005 3
    专家3λmax6.087 24.083 94.166 24.045 46.412 73.009 23.018 3
    CR0.013 80.031 40.062 20.017 00.065 50.008 90.017 6
    专家4λmax6.059 24.051 94.109 14.159 36.577 93.044 43.053 9
    CR0.009 40.019 40.040 80.059 70.091 70.042 70.051 9
    专家5λmax6.032 84.186 54.144 84.131 66.338 63.000 03.018 3
    CR0.005 20.069 80.054 20.049 30.053 700.017 6
    下载: 导出CSV

    表  5  废弃矿井抽水蓄能选址各指标权重

    Table  5  Weights of each index for site selection of pumped storage plant using abandoned mines

    准则层权重指标层综合权重排序
    空间条件 B10.304 4巷道空间体积C10.123 93
    巷道地形条件C20.020 412
    上下水库水位差C30.142 71
    巷道瓦斯含量C40.017 415
    地质条件 B20.299 2巷道围岩稳定性C50.133 22
    巷道围岩渗透率C60.123 34
    地质灾害类别C70.013 918
    地质灾害频率C80.028 79
    水文条件 B30.151 6水源水质C90.014 217
    矿井涌水量C100.030 88
    水库注水水源C110.015 516
    地下水循环特征C120.091 15
    社会条件 B40.073 7当地用电需求量C130.022 211
    矿区交通便捷度C140.005 522
    与电网距离C150.008 321
    与城市距离C160.008 820
    当地政策支持度C170.023 910
    就业率C180.005 023
    经济条件 B50.129 1单位储能成本C190.055 97
    投资回收年限C200.012 819
    工程收益率C210.060 56
    资源条件 B60.042 0当地有效风速C220.019 413
    平均降水量C230.018 714
    太阳辐射时间C240.004 024
    下载: 导出CSV

    表  6  废弃矿井抽水蓄能电站基本参数

    Table  6  Basic parameters of pumped storage power plant using abandoned mine

    参数数值
    上水库平均水位/m1 210
    上水库总容积/m334 600
    下水库正常储水高度/m4.5
    下水库正常储水位高程/m830.5
    下水库总容积/m341 200
    上下水库自然高程差/m338
    上下水库容积之比0.84
    输水巷道长度/m2 016
    下载: 导出CSV

    表  7  黄河流域九省区部分废弃矿井抽水蓄能电站建设模式

    Table  7  Construction mode of some pumped storage power plants using abandoned mines in nine provinces of Yellow River Basin

    省/自治区半地下式建设矿井数全地下式建设矿井数
    200~400 m400~600 m600~800 m200~400 m400~600 m
    青海10001
    四川922441
    甘肃33201
    宁夏02010
    内蒙古30000
    陕西54101
    山西54000
    河南107211
    山东33201
    下载: 导出CSV

    表  8  2016—2020黄河流域九省区废弃矿井抽水蓄能电站可利用井巷资源量

    Table  8  Available shaft and drift resources for pumped storage power plants in abandoned mines in nine provinces of Yellow River Basin in 2016-2020 单位:万m3

    省/自治区半地下式全地下式
    [200, 400) m[400, 600) m[600, 800) m[200, 400) m[400, 600) m
    青海1.740.000.0001.7424
    四川72.12176.4632.0832.088.02
    甘肃18.1218.1212.0806.04
    宁夏020.75010.360
    内蒙古27.440000
    陕西72.6058.0814.52014.52
    山西103.4382.74000
    河南181.72127.2036.3418.1718.17
    山东58.4158.4138.94019.47
    下载: 导出CSV

    表  9  2021年黄河流域九省区峰谷电价差统计数据

    Table  9  Statistical data of peak-to-valley electricity price difference in nine provinces of Yellow River Basin in 2021

    地区一般工商业峰谷价差/(元·kW−1·h−1)大工业峰谷价差/(元·kW−1·h−1)
    <1 kV1~10(20) kV≥35 kV1~10(20) kV35 kV110 kV220 kV
    青海0.444 60.438 40.398 80.424 20.411 60.399 00.390 4
    四川0.615 20.602 20.589 20.540 20.520 20.498 20.475 2
    甘肃0.581 40.571 40.561 40.438 30.428 30.418 30.409 3
    宁夏0.407 60.391 60.375 60.318 80.294 80.278 80.262 8
    内蒙古东部0.717 10.680 00.594 30.492 10.485 10.445 70.422 7
    内蒙古西部0.217 90.217 90.217 90.217 90.217 90.217 90.217 9
    陕西榆林0.564 70.544 70.524 70.530 70.511 80.486 60.486 6
    陕西其他0.577 40.557 40.537 40.633 40.608 20.583 00.576 8
    山西0.455 10.435 80.421 30.438 70.409 80.385 60.366 3
    河南0.624 50.596 00.566 40.622 40.606 30.590 30.581 7
    山东0.744 50.728 10.711 60.735 70.717 70.699 70.681 7
    下载: 导出CSV
  • [1] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[R]. 北京: 中华人民共和国国务院, 2020.
    [2] IEA. Global CO2 emissions rebounded to their highest level in history in 2021[EB/OL]. (2022-03-08) [2022-06-03]. https://www.iea.org/news/global–CO2–emissions–rebounded–to–their–highest–level–in–history–in–2021.
    [3] 张智刚,康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报,2022,42(8):2806−2818.

    ZHANG Zhigang,KANG Chongqing. Challenges and prospects for constructing the new–type power system towards a Carbon Neutrality future[J]. Proceedings of the CSEE,2022,42(8):2806−2818.
    [4] 舒印彪,张丽英,张运洲,等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学,2021,23(6):1−14.

    SHU Yinbiao,ZHANG Liying,ZHANG Yunzhou,et al. Carbon Peak and Carbon Neutrality path for China’s power industry[J]. Strategic Study of CAE,2021,23(6):1−14.
    [5] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J/OL]. 中国电机工程学报, 2022: 1–27 [22-06-03]. https://doi.org/10.13334/j.0258–8013.pcsee.212716.

    LI Bo, CHEN Minyou, ZHONG Haiwang, et al. A review of long–term planning of new power systems with large share of renewable energy[J/OL]. Proceedings of the CSEE, 2022: 1–27 [2022-06-03]. https://doi.org/10.13334/j.0258–8013.pcsee.212716.
    [6] 郭志忠,叶瑞丽,刘瑞叶,等. 含抽水蓄能电站的可再生能源电网优化调度策略[J]. 电力自动化设备,2018,38(3):7−15.

    GUO Zhizhong,YE Ruili,LIU Ruiye,et al. Optimal scheduling strategy for renewable energy system with pumped storage station[J]. Electric Power Automation Equipment,2018,38(3):7−15.
    [7] 刘钦节,王金江,杨科,等. 关闭/废弃矿井地下空间资源精准开发利用模式研究[J]. 煤田地质与勘探,2021,49(4):71−78.. doi: 10.3969/j.issn.1001-1986.2021.04.009

    LIU Qinjie,WANG Jinjiang,YANG Ke,et al. Research on the model of accurate exploitation and utilization of underground space resources in closed/abandoned mines[J]. Coal Geology & Exploration,2021,49(4):71−78.. doi: 10.3969/j.issn.1001-1986.2021.04.009
    [8] 卞正富,周跃进,曾春林,等. 废弃矿井抽水蓄能地下水库构建的基础问题探索[J]. 煤炭学报,2021,46(10):3308−3318.

    BIAN Zhengfu,ZHOU Yuejin,ZENG Chunlin,et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society,2021,46(10):3308−3318.
    [9] 朱超斌,周跃进,卞正富,等. 废弃矿井抽水蓄能句法视角下拓扑模型构建及空间优化[J]. 煤炭学报,2022,47(6):2279−2288.

    ZHU Chaobin,ZHOU Yuejin,BIAN Zhengfu,et al. Topological model construction and space optimization of abandoned mine pumped storage from the perspective of space syntax[J]. Journal of China Coal Society,2022,47(6):2279−2288.
    [10] 罗魁,石文辉,曹飞,等. 利用废弃矿洞建设抽水蓄能电站初探[J]. 中国能源,2018,40(10):42−47.. doi: 10.3969/j.issn.1003-2355.2018.10.007

    LUO Kui,SHI Wenhui,CAO Fei,et al. Preliminary study on construction of pumped storage power station by using abandoned mines[J]. Energy of China,2018,40(10):42−47.. doi: 10.3969/j.issn.1003-2355.2018.10.007
    [11] 刘峰,李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报,2017,42(9):2205−2213.

    LIU Feng,LI Shuzhi. Discussion on the new development and utilization of underground space resources of transitional coal mines[J]. Journal of China Coal Society,2017,42(9):2205−2213.
    [12] FESSENDEN R A. System of storing power: US1247520[P]. 1917-11-20.
    [13] WILLETT D C. Underground pumped storage research priorities: Technical planning study[M]. Palo Alto: Electric Power Research Institute, 1976.
    [14] TAM S W, BLOMQUIOT C A, KARTSOUNES G T. Underground pumped hydro storage: An overview[R]. Chicago: Harza Engineering Company, 1977.
    [15] CHARLES T. Underground hydroelectric pumped storage: An evaluation of the concept[M]. Boston: Main, 1978.
    [16] HARZA R D. Hydro and pumped storage for peaking[J]. Power Engineering,1960,64(10):79−82.
    [17] CHIU H H,RODGERS L W,SALEEM Z A,et al. Mechanical energy storage systems:Compressed air and underground pumped hydro[J]. Journal of Energy,1979,3(3):131−139.. doi: 10.2514/3.62426
    [18] SEIWALD S. Erweiterung Kraftwerk Naßfeld–Erhöhung Bockhartseedamm[J]. Ö sterreichische Wasser−und Abfallwirtschaft,2007,59(7):91−97.
    [19] NIEMANN A,BALMES J P,SCHREIBER U,et al. Proposed underground pumped hydro storage power plant at Prosper−Haniel Colliery in Bottrop−State of play and prospects[J]. Mining Report Glückauf,2018,154(3):214−223.
    [20] WINDE F,KAISER F,ERASMUS E. Exploring the use of deep level gold mines in South Africa for underground pumped hydroelectric energy storage schemes[J]. Renewable and Sustainable Energy Reviews,2017,78:668−682.. doi: 10.1016/j.rser.2017.04.116
    [21] MONTERO R A, WORTBERG T, BINIAS J, et al. Integrated assessment of underground pumped–storage facilities using existing coal mine infrastructure[C]. London: Taylor & Francis Group, 2016.
    [22] WESSEL M,MADLENER R,HILGERS C. Economic feasibility of semi−underground pumped storage hydropower plants in open–pit mines[J]. Energies,2020,13(16):4178.. doi: 10.3390/en13164178
    [23] 许雨喆. 基于废弃矿井的抽水蓄能电站设计[D]. 淮南: 安徽理工大学, 2019.

    XU Yuzhe. Design of pumped storage power station based on abandoned mines[D]. Huainan: Anhui University of Science and Technology, 2019.
    [24] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报,2015,40(2):239−246.

    GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239−246.
    [25] 谢和平,侯正猛,高峰,等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972.

    XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped–storage power in underground coal mine:Principles,present situation and future[J]. Journal of China Coal Society,2015,40(5):965−972.
    [26] 顾大钊. 能源“金三角”煤炭现代开采水资源及地表生态保护技术[J]. 中国工程科学,2013,15(4):102−107.. doi: 10.3969/j.issn.1009-1742.2013.04.018

    GU Dazhao. Water resource and surface ecology protection technology of modern coal mining in China’s energy“Golden Triangle”[J]. Strategic Study of CAE,2013,15(4):102−107.. doi: 10.3969/j.issn.1009-1742.2013.04.018
    [27] 浦海,许军策,卞正富,等. 关闭/废弃矿井地热能开发利用研究现状与进展[J]. 煤炭学报,2022,47(6):2243−2269.

    PU Hai,XU Junce,BIAN Zhengfu,et al. Research status and progress of geothermal energy development and utilization from closed/abandoned coal mines[J]. Journal of China Coal Society,2022,47(6):2243−2269.
    [28] LIU Qin,SUN Yajun,XU Zhimin,et al. Assessment of abandoned coal mines as urban reservoirs[J]. Mine Water and the Environment,2019,38(2):215−225.. doi: 10.1007/s10230-019-00588-3
    [29] MENENDEZ J,SCHMIDT F,KONIETZKY H,et al. Stability analysis of the underground infrastructure for pumped storage hydropower plants in closed coal mines[J]. Tunnelling and Underground Space Technology,2019,94:103117.. doi: 10.1016/j.tust.2019.103117
    [30] MENENDEZ J,FERNANDEZ–ORO J M,GALDO M,et al. Pumped–storage hydropower plants with underground reservoir:Influence of air pressure on the efficiency of the Francis turbine and energy production[J]. Renewable Energy,2019,143:1427−1438.. doi: 10.1016/j.renene.2019.05.099
    [31] KITSIKOUDIS V,ARCHAMBEAU P,DEWALS B,et al. Underground pumped–storage hydropower (UPSH) at the Martelange Mine (Belgium):Underground reservoir hydraulics[J]. Energies,2020,13(14):3512.. doi: 10.3390/en13143512
    [32] PUJADES E,ORBAN P,ARCHAMBEAU P,et al. Underground pumped–storage hydropower (UPSH) at the Martelange Mine (Belgium):Interactions with groundwater flow[J]. Energies,2020,13(9):2353.. doi: 10.3390/en13092353
    [33] FAN Jinyang,XIE Heping,CHEN Jie,et al. Preliminary feasibility analysis of a hybrid pumped–hydro energy storage system using abandoned coal mine goafs[J]. Applied Energy,2020,258:114007.. doi: 10.1016/j.apenergy.2019.114007
    [34] PUJADES E,POULAIN A,ORBAN P,et al. The impact of hydrogeological features on the performance of Underground Pumped–Storage Hydropower (UPSH)[J]. Applied Sciences,2021,11(4):1760.. doi: 10.3390/app11041760
    [35] 王兵,刘朋帅,邓凯磊. 基于模糊多准则决策模型的废弃矿井抽水蓄能电站选址研究[J]. 矿业科学学报,2021,6(6):667−677.

    WANG Bing,LIU Pengshuai,DENG Kailei. Site selection of pumped storage power station in abandoned mines:Results from fuzzy–based multi criteria decision model[J]. Journal of Mining Science and Technology,2021,6(6):667−677.
    [36] YONG Xingkai,CHEN Wenjun,WU Yunna,et al. A two–stage framework for site selection of underground pumped storage power stations using abandoned coal mines based on multi–criteria decision–making method:An empirical study in China[J]. Energy Conversion and Management,2022,260:115608.. doi: 10.1016/j.enconman.2022.115608
    [37] XUE Jingguo,HOU Xueliang,ZHOU Jianli,et al. Obstacle identification for the development of pumped hydro storage using abandoned mines:A novel multi–stage analysis framework[J]. Journal of Energy Storage,2022,48:104022.. doi: 10.1016/j.est.2022.104022
    [38] 杨立滨,冯冀,乔梁,等. 基于层次分析法与劳瑞模型的光伏电站综合效益评估[J]. 电力系统及其自动化学报,2018,30(11):120−125.. doi: 10.3969/j.issn.1003-8930.2018.11.020

    YANG Libin,FENG Ji,QIAO Liang,et al. Comprehensive benefit evaluation of PV power station based on AHP and Lowry Model[J]. Proceedings of the CSU−EPSA,2018,30(11):120−125.. doi: 10.3969/j.issn.1003-8930.2018.11.020
    [39] 商大成. 毕节地区利用废弃煤矿地下空间建设抽水蓄能电站的研究[D]. 贵阳: 贵州大学, 2021.

    SHANG Dacheng. Study on construction of pumped storage power station by using underground space of waste coal mine in Bijie area[D]. Guiyang: Guizhou University, 2021.
    [40] 卢开放,侯正猛,孙伟,等. 云南省矿井抽水蓄能电站潜力评估与建设关键技术[J]. 工程科学与技术,2022,54(1):136−144.

    LU Kaifang,HOU Zhengmeng,SUN Wei,et al. Potential evaluation and construction key technologies of pumped−storage power stations in mines of Yunnan Province[J]. Advanced Engineering Sciences,2022,54(1):136−144.
    [41] 夏连宁. 关于输水管道水力计算公式选用的探讨[J]. 给水排水,2020,46(4):139−143.. doi: 10.13789/j.cnki.wwe1964.2020.04.024

    XIA Lianning. Discussion on section of water head loss calculation formulas[J]. Water & Wastewater Engineering,2020,46(4):139−143.. doi: 10.13789/j.cnki.wwe1964.2020.04.024
    [42] 韩杨,张小珩,汪胜和,等. 废弃矿井抽水蓄能多场景利用可行性及技术经济研究[J]. 现代商贸工业,2020,41(11):210−213.

    HAN Yang,ZHANG Xiaoheng,WANG Shenghe,et al. Feasibility and technical and economic research on multi– scenario utilization of pumped storage in waste mine[J]. Modern Business Trade Industry,2020,41(11):210−213.
    [43] 王昊婧. 新形势下我国抽水蓄能电站运营效益评价方法研究[D]. 北京: 华北电力大学, 2016.

    WANG Haojing. Pumped–storage power station operation efficiency evaluation method[D]. Beijing: North China Electric Power University, 2016.
    [44] 曹飞, 王婷婷, 唐修波. 利用废弃矿井建设抽水蓄能电站的效益探讨[C]//抽水蓄能电站工程建设文集(2020). 北京: 中国水利水电出版社, 2020.
    [45] 高瑾瑾,郑源,李涧鸣. 基于改进序关系分析法的抽水蓄能电站经济效益综合评价[J]. 长江科学院院报,2018,35(4):137−142.. doi: 10.11988/ckyyb.20161372

    GAO Jinjin,ZHENG Yuan,LI Jianming. Comprehensive evaluation of economic benefits of pumped storage power plants by improved order relation analysis method[J]. Journal of Yangtze River Scientific Research Institute,2018,35(4):137−142.. doi: 10.11988/ckyyb.20161372
    [46] 郗富瑞,张进德,王延宇,等. 中国废弃矿山地下抽水蓄能电站技术要点与可行性分析[J]. 科技导报,2020,38(11):41−50.. doi: 10.3981/j.issn.1000-7857.2020.11.005

    XI Furui,ZHANG Jinde,WANG Yanyu,et al. Technical key points and feasibility analysis of underground pumped storage power station in built abandoned mines in China[J]. Science & Technology Review,2020,38(11):41−50.. doi: 10.3981/j.issn.1000-7857.2020.11.005
    [47] 谢和平,高明忠,刘见中,等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报,2018,43(6):1487−1503.

    XIE Heping,GAO Mingzhong,LIU Jianzhong,et al. Research on exploitation and volume estimation of underground space in coal mines[J]. Journal of China Coal Society,2018,43(6):1487−1503.
    [48] SHANG Dacheng,PEI Peng. Analysis of influencing factors of modification potential of abandoned coal mine into pumped storage power station[J]. Journal of Energy Resources Technology,2021,143(11):112003.. doi: 10.1115/1.4049608
    [49] 张保生,陈宁,高博,等. 废弃矿井抽水蓄能电站水泵水轮机关键技术[J]. 科技导报,2021,39(13):66−72.. doi: 10.3981/j.issn.1000-7857.2021.13.008

    ZHANG Baosheng,CHEN Ning,GAO Bo,et al. Key technologies of pump–turbine in underground pumped storage station using abandoned mine[J]. Science & Technology Review,2021,39(13):66−72.. doi: 10.3981/j.issn.1000-7857.2021.13.008
  • 加载中
图(7) / 表(9)
计量
  • 文章访问数:  919
  • HTML全文浏览量:  24
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-04
  • 修回日期:  2022-10-14
  • 刊出日期:  2022-12-25
  • 网络出版日期:  2022-11-28

目录

    /

    返回文章
    返回