留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅埋煤层开采地面塌陷裂缝规律及防治方法

侯恩科 谢晓深 冯栋 陈秋计 车晓阳 侯鹏飞

侯恩科,谢晓深,冯栋,等. 浅埋煤层开采地面塌陷裂缝规律及防治方法[J]. 煤田地质与勘探,2022,50(12):30−40 doi: 10.12363/issn.1001-1986.22.05.0427
引用本文: 侯恩科,谢晓深,冯栋,等. 浅埋煤层开采地面塌陷裂缝规律及防治方法[J]. 煤田地质与勘探,2022,50(12):30−40 doi: 10.12363/issn.1001-1986.22.05.0427
HOU Enke,XIE Xiaoshen,FENG Dong,et al. Laws and prevention methods of ground cracks in shallow coal seam mining[J]. Coal Geology & Exploration,2022,50(12):30−40 doi: 10.12363/issn.1001-1986.22.05.0427
Citation: HOU Enke,XIE Xiaoshen,FENG Dong,et al. Laws and prevention methods of ground cracks in shallow coal seam mining[J]. Coal Geology & Exploration,2022,50(12):30−40 doi: 10.12363/issn.1001-1986.22.05.0427

浅埋煤层开采地面塌陷裂缝规律及防治方法

doi: 10.12363/issn.1001-1986.22.05.0427
基金项目: 国家自然科学基金项目(42177174);陕西省联合基金项目−企业−陕煤联合基金项目(2021JLM-09);陕西省软科学研究计划项目(2022KRM034)
详细信息
    第一作者:

    侯恩科,1963年生,男,陕西扶风人,博士,教授,博士生导师,从事煤矿地质环境保护与矿井水害防治的教学与科研工作.E-mail:houek@xust.edu.cn

  • 中图分类号: TD745

Laws and prevention methods of ground cracks in shallow coal seam mining

  • 摘要: 陕北浅埋煤层大规模、高强度开采诱发了严重的地面塌陷,造成大面积土地损毁、水土流失和植被死亡,导致表生环境出现退化。为掌握浅埋煤层开采地面塌陷裂缝发育规律,明晰其机理,提出适宜的治理恢复措施,实现“煤−水−生态”的协调发展,以陕北张家峁井田和柠条塔井田为研究区,采用实地调查、模拟实验和理论分析相结合的方法开展了浅埋煤层开采地面塌陷规律及防治方法研究。结果表明:浅埋煤层开采地表裂缝呈“O”型展布,静态发育特征与采高和地形地貌呈正相关关系、与采深呈负相关关系,且同一工作面切眼附近地表裂缝发育程度最高、巷道次之、面内最低;地表裂缝具有“先开后(半)合”和“只开不合”2种活动特征,整体活动时间为4~9 d,活动期间裂缝初始开裂宽度与最大发育宽度呈线性正相关关系,与稳定宽度呈线性和指数2种正相关关系;黄土沟壑区下坡段开采地表裂缝活动与表土块体的稳定性系数有关,而稳定系数与坡角呈负相关的一次幂函数,与主裂缝间距呈正相关的一次幂函数。上坡段开采坡体裂缝“先开后(半)合”活动受岩块倒转和坡体滑移双重控制,面内沟底裂缝“先开后合”的活动特征受关键岩层运移控制。研究提出了黄土沟壑区沟底贯通型裂缝“裂缝填充+沟道恢复”、坡体裂缝 “裂缝充填+微地形改造”的治理方法和风沙滩地塌陷区的“三圈”修复模式。研究成果在陕北安山煤矿和柠条塔煤矿进行了应用,效果良好。

     

  • 图  研究区位置

    Fig. 1  Location map of study area

    图  地表裂缝类型及组合方式

    Fig. 2  Types and combination modes of surface cracks

    图  地表裂缝平面展布特征

    Fig. 3  Plane distribution characteristics of surface cracks

    图  S1230工作面不同位置地表裂缝宽度占比

    Fig. 4  Ratio of surface crack width of working face S1230

    图  不同区域部分地表裂缝活动特征

    Fig. 5  Characteristics of surface fracture activity

    图  活动期间裂缝宽度变化规律

    Fig. 6  Variation law of crack width during activity

    图  相似材料模拟模型

    Fig. 7  Similar material simulation model

    图  采动覆岩垮落及结构特征

    Fig. 8  Caving and structural characteristics of mining overlying strata

    图  开采结束覆岩及地表破坏特征

    Fig. 9  Characteristics of overburden and surface failure at the end of mining

    图  10  采煤“覆岩–地表”运移模式

    Fig. 10  “Overburden-surface” migration model of coal mining

    图  11  块体几何结构与力学特征

    Fig. 11  Geometric structure and mechanical characteristics of blocks

    图  12  沟底裂缝岩土块体活动机理

    Fig. 12  An indication of the activity mechanism of cracks at the bottom of the trench

    图  13  沟底贯通型地表裂缝治理

    Fig. 13  Treatment of surface cracks with penetration at the bottom of the ditch

    图  14  坡体裂缝治理方法

    Fig. 14  Treatment method of slope crack

    图  15  微地形改造技术

    Fig. 15  Technology of micro-topography transformation

    图  16  风沙滩地塌陷区“三圈”修复

    Fig. 16  The sign of “three circles” restoration in the subsidence area of eolian sand beach

    图  17  安山煤矿125203工作面地形特征[23]

    Fig. 17  Topographic characteristics of working face 125203 in Anshan Coal Mine[23]

    图  18  陕北安山煤矿125203面裂缝治理效果

    Fig. 18  Governance effect of engineering practice in working face 125203 of Anshan Coal Mine of northern Shaanxi

    图  19  陕北柠条塔煤矿北翼部分实践工程

    Fig. 19  Part of practice projects in Ningtiaota Coal Mine of northern Shaanxi

    图  20  陕北柠条塔煤矿北翼生态修复示范区

    Fig. 20  Demonstration area of ecological restoration in the north of Ningtiaota Coal Mine of northern Shaanxi

    表  1  工作面开采条件与裂缝宽度分区占比数据

    Table  1  Ratio data of mining conditions of working faces and widths of fracture zone

    煤矿工作面开采条件裂缝宽度分区占比/%
    采高/m采深/m开采方式地形地貌0~5 cm>5~10 cm>10~15 cm>15~20 cm>20 cm
    柠条塔N12124.8178.0综采黄土沟壑46.025.015.05.09.0
    S12306.5181.0综采风沙滩地53.029.08.04.06.0
    S120024.1191.0综采风沙滩地75.010.06.02.07.0
    S120134.0142.0N00工法风沙滩地91.09.0000
    张家峁142093.893.0综采黄土沟壑85.011.01.003.0
    152096.0210.0综采黄土沟壑69.022.07.02.00
    下载: 导出CSV
  • [1] 王双明,孙强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8−15. doi: 10.13225/j.cnki.jccs.YG19.1758

    WANG Shuangming,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15. doi: 10.13225/j.cnki.jccs.YG19.1758
    [2] 康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(1):013501.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(1):013501.
    [3] 徐祝贺,李全生,李晓斌,等. 浅埋高强度开采覆岩结构演化及地表损伤研究[J]. 煤炭学报,2020,45(8):2728−2739.

    XU Zhuhe,LI Quansheng,LI Xiaobin,et al. Structural evolution of overburden and surface damage caused by high–intensity mining with shallow depth[J]. Journal of China Coal Society,2020,45(8):2728−2739.
    [4] 范立民. 榆神府矿区煤炭开采与地质灾害研究[J]. 中国煤炭,2014,40(5):52−55.

    FAN Limin. On coal mining intensity and geo-hazard in Yulin-Shenmu-Fugu mine area[J]. Journal of China Coal,2014,40(5):52−55.
    [5] 侯恩科,陈育,车晓阳,等. 浅埋煤层过沟开采覆岩破坏特征及裂隙演化规律研究[J]. 煤炭科学技术,2021,49(10):185−192.

    HOU Enke,CHEN Yu,CHE Xiaoyang,et al. Study on overburden failure characteristics and fracture evolution law of shallow buried coal seam through trench mining[J]. Coal Science and Technology,2021,49(10):185−192.
    [6] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.
    [7] 王双明,侯恩科,谢晓深,等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术,2021,49(1):19−31.

    WANG Shuangming,HOU Enke,XIE Xiaoshen,et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Science and Technology,2021,49(1):19−31.
    [8] 胡振琪,王新静,贺安民. 风积沙区采煤沉陷地裂缝分布特征及发生发育规律[J]. 煤炭学报,2014,39(1):11−18.

    HU Zhenqi,WANG Xinjing,HE Anmin. Distribution characteristic and development rules of ground fissures due to coal mining in windy and sandy region[J]. Journal of China Coal Society,2014,39(1):11−18.
    [9] XU Yuankun,WU Kan,LI Liang,et al. Ground cracks development and characteristics of strata movement under fast excavation:A case study at Bulianta Coal Mine,China[J]. Bulletin of Engineering Geology and the Environment,2019,78(1):325−340. doi: 10.1007/s10064-017-1047-y
    [10] 侯恩科,首召贵,徐友宁,等. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探,2017,45(6):102−110. doi: 10.3969/j.issn.1001-1986.2017.06.017

    HOU Enke,SHOU Zhaogui,XU Youning,et al. Application of UAV remote sensing technology in monitoring of coal mining−induced subsidence[J]. Coal Geology & Exploration,2017,45(6):102−110. doi: 10.3969/j.issn.1001-1986.2017.06.017
    [11] 侯恩科,谢晓深,王双明,等. 中埋深煤层综采地表裂缝发育规律研究[J]. 采矿与安全工程学报,2021,38(6):1178−1188. doi: 10.13545/j.cnki.jmse.2020.0293

    HOU Enke,XIE Xiaoshen,WANG Shuangming,et al. Development law of ground cracks induced by fully–mechanized mining of medium–buried coal seams[J]. Journal of Mining & Safety Engineering,2021,38(6):1178−1188. doi: 10.13545/j.cnki.jmse.2020.0293
    [12] 侯恩科, 张杰, 谢晓深, 等. 无人机遥感与卫星遥感在采煤地表裂缝识别中的对比[J]. 地质通报, 2019, 38(2/3): 443–448.

    HOU Enke, ZHANG Jie, XIE Xiaoshen, et al. Contrast application of unmanned aerial vehicle remote sensing and satellite remote sensing technology relating to ground surface cracks recognition in coal mining area[J]. Geological Bulletion of China, 2019, 38(2/3): 443–448.
    [13] 胡振琪. 再论土地复垦学[J]. 中国土地科学,2019,33(5):1−18.

    HU Zhenqi. Re-exploration of land reclamation science[J]. China Land Science,2019,33(5):1−18.
    [14] 刘辉,邓喀中,雷少刚,等. 采动地裂缝动态发育规律及治理标准探讨[J]. 采矿与安全工程学报,2017,34(5):884−890.

    LIU Hui,DENG Kazhong,LEI Shaogang,et al. Dynamic developing law and governance standard of ground fissures caused by underground mining[J]. Journal of Mining & Safety Engineering,2017,34(5):884−890.
    [15] 胡海峰,廉旭刚,蔡音飞,等. 山西黄土丘陵采煤沉陷区生态环境破坏与修复研究[J]. 煤炭科学技术,2020,48(4):70−79.

    HU Haifeng,LIAN Xugang,CAI Yinfei,et al. Study on ecological environment damage and restoration for coal mining–subsided area in loess hilly area of Shanxi Province[J]. Coal Science and Technology,2020,48(4):70−79.
    [16] DAI Zhangyin,ZHANG Lu,WANG Yanlei,et al. Deformation and failure response characteristics and stability analysis of bedding rock slope after underground adverse slope mining[J]. Bulletin of Engineering Geology and the Environment,2021,80:4405−4422. doi: 10.1007/s10064-021-02258-7
    [17] 朱恒忠. 西南山区浅埋煤层采动地裂缝发育规律及减损控制[D]. 北京: 中国矿业大学(北京), 2019.

    ZHU Hengzhong. Developmental regularity and reduction control technology of mining−induced ground fissures of shallow burial coal seam in mountainous area of southwestern China[D]. Beijing: China University of Mining and Technology (Beijing), 2019.
    [18] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.
    [19] 黄庆享,曹健,贺雁鹏. 浅埋极近采空区下工作面顶板结构及支架载荷分析[J]. 岩石力学与工程学报,2018,37(增刊1):3153−3159.

    HUANG Qingxiang,CAO Jian,HE Yanpeng. Analysis of structure and support load of mining face under ultra-close goaf in shallow multiple seams[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Sup.1):3153−3159.
    [20] 张强,杨康,张昊,等. 固体充填开采矿压显现弱化规律及表征研究[J]. 中国矿业大学学报,2021,50(3):479−488. doi: 10.13247/j.cnki.jcumt.001279

    ZHANG Qiang,YANG Kang,ZHANG Hao,et al. Research on weakening law and quantitative characterization of strata behavior in solid filling mining[J]. Journal of China University of Mining & Technology,2021,50(3):479−488. doi: 10.13247/j.cnki.jcumt.001279
    [21] 范立民,马雄德,蒋泽泉. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术,2019,47(7):1−30.

    FAN Limin,MA Xiongde,JIANG Zequan. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology,2019,47(7):1−30.
    [22] HUANG Qingxiang,DU Junwu. Coupling control on pillar stress concentration and surface cracks in shallow multi-seam mining[J]. International Journal of Mining Science and Technology,2020,31(1):95−101.
    [23] 侯恩科,冯栋,谢晓深,等. 浅埋煤层沟道采动裂缝发育特征及治理方法[J]. 煤炭学报,2021,46(4):1297−1308.

    HOU Enke,FENG Dong,XIE Xiaoshen,et al. Development characteristics and treatment methods of mining surface cracks in shallow–buried coal seam gully[J]. Journal of China Coal Society,2021,46(4):1297−1308.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  8
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-09-22
  • 刊出日期:  2022-12-25
  • 网络出版日期:  2022-12-02

目录

    /

    返回文章
    返回