留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宁东矿区气化渣基膏体充填材料性能优化研究

陈登红 李超 张治国

陈登红,李超,张治国. 宁东矿区气化渣基膏体充填材料性能优化研究[J]. 煤田地质与勘探,2022,50(12):41−50 doi: 10.12363/issn.1001-1986.22.05.0385
引用本文: 陈登红,李超,张治国. 宁东矿区气化渣基膏体充填材料性能优化研究[J]. 煤田地质与勘探,2022,50(12):41−50 doi: 10.12363/issn.1001-1986.22.05.0385
CHEN Denghong,LI Chao,ZHANG Zhiguo. Study on performance optimization of gasification slag based paste filling materials in Ningdong mining area[J]. Coal Geology & Exploration,2022,50(12):41−50 doi: 10.12363/issn.1001-1986.22.05.0385
Citation: CHEN Denghong,LI Chao,ZHANG Zhiguo. Study on performance optimization of gasification slag based paste filling materials in Ningdong mining area[J]. Coal Geology & Exploration,2022,50(12):41−50 doi: 10.12363/issn.1001-1986.22.05.0385

宁东矿区气化渣基膏体充填材料性能优化研究

doi: 10.12363/issn.1001-1986.22.05.0385
基金项目: 国家重点研发计划项目(2019YFC1904300);合肥综合性国家科学中心能源研究院(安徽省能源实验室)项目(21KZS217);安徽省高校协同创新基金项目(GXXT-2021-017)
详细信息
    第一作者:

    陈登红,1986年生,男,安徽潜山人,博士,副教授,从事绿色充填开采、微波高效钻孔与深井巷道支护等方面的教学研究工作.E-mail:ahhncdh@163.com

    通信作者:

    李超,1998年生,男,甘肃陇南人,硕士研究生,从事绿色充填开采方面的研究. E-mail:lichao17793477139@163.com

  • 中图分类号: TD989

Study on performance optimization of gasification slag based paste filling materials in Ningdong mining area

  • 摘要: 宁东矿区作为黄河流域的9个亿吨煤基地之一,年产出煤基固废近2×108 t且气化渣堆存量大、规模化利用困难、简单填埋处理空间有限,充填开采能解决空间堆存难题,但成本高、性能亟待优化。根据响应面法设计气化渣在固体中的掺量(A)、气化渣与水泥质量比(B)、料浆含量(C)3因素3水平共17组中心组合实验,对气化渣基膏体充填材料的坍落度、扩展度、7和14 d单轴抗压强度等性能进行了对比优化研究。实验前使用X射线衍射仪(XRD)和扫描电镜(SEM)对原料的成分及微观形态进行观测分析,试块单轴压缩后通过SEM观测分析水化作用特点,揭示强度形成机制。综合强度和流动性得到最优配比及其性能特征为:A为48%,B为3,C为80%,脱硫石膏∶煤矸石∶炉底渣的质量按2∶1∶1配制,其7、14 d强度分别为1.15、2.41 MPa,坍落度为133 mm,扩展度为325.5 mm,坍落度与扩展度的比值为0.41。进一步基于响应面法分析得到7、14 d强度的单影响因素按显著性排序分别为:B>C=AB>A>C;7、14 d强度的交互影响因素按显著性排序分别为:BC>AB>ACAB> AC>BC;坍落度和扩展度的单影响因素按显著性排序分别为:C>B>AC>A>B,进而为严控地表沉降、快充减少堵管、强度成本兼顾3种不同功能需求优选了对应配比方案及参数。研究成果为黄河流域的生态保护与煤炭低损伤开采提供了重要基础参数和优化方向。

     

  • 图  7和14 d单轴抗压强度实验结果统计

    Fig. 1  Statistical chart of 7 d and 14 d uniaxial compressive strength test results

    图  坍落度、扩展度实验结果统计

    Fig. 2  Statistical chart of slump and expansion test results

    图  坍落度∶扩展度统计分布

    Fig. 3  Statistical distribution of slump∶expansion

    图  7 d单轴抗压强度响应面分析

    Fig. 4  7 d uniaxial compressive strength response surface

    图  14 d单轴抗压强度响应面分析

    Fig. 5  Response surface analysis of 14 d uniaxial compressive strength

    图  各因素与强度均值的关系

    Fig. 6  Relationship between each factor and average intensity

    图  坍落度响应面分析

    Fig. 7  Slump response surface analysis

    图  扩展度响应面分析

    Fig. 8  Response surface analysis of expansibility

    图  料浆浓度与坍落度和扩展度均值的关系

    Fig. 9  Relationship between slurry concentration and mean value of slump and expansion

    图  10  配比寻优

    Fig. 10  Optimization chart

    图  11  不同龄期充填体试件断面微观形貌

    Fig. 11  Section micro morphology of filling specimen at different ages

    表  1  预实验结果

    Table  1  Prepare test results

    实验水平分组7 d强度/MPa14 d强度/MPa坍落度/mm扩展度/mm
    1.222.01139351
    0.831.39135322
    0.750.94121308
    下载: 导出CSV

    表  2  实验方案

    Table  2  Experimental scheme

    组序号A/%BC/%
    152580
    250480
    348380
    450583
    550577
    650480
    748580
    850480
    948483
    1050383
    1150480
    1250377
    1352477
    1452483
    1552380
    1650480
    1748477
    下载: 导出CSV

    表  3  7 d抗压强度推荐模型

    Table  3  Recommended 7 d compressive strength model and analysis of variance

    模型校正R2预测R2备注
    Linear0.0077−0.4844
    2FI−0.2373−2.1286
    Quadratic0.94310.7970建议采用
    Cubic0.9459
    下载: 导出CSV

    表  4  14 d抗压强度推荐模型

    Table  4  Recommended 14 d compressive strength model and analysis of variance

    模型校正R2预测R2备注
    Linear−0.0640−0.5018
    2FI−0.1734−1.4885
    Quadratic0.91810.7409建议采用
    Cubic0.9130
    下载: 导出CSV

    表  5  坍落度推荐模型

    Table  5  Recommended slump model

    模型校正R2预测R2备注
    Linear0.93290.8974建议采用
    2FI0.93500.8391
    Quadratic0.94160.7517
    Cubic0.9555
    下载: 导出CSV

    表  6  扩展度推荐模型

    Table  6  Extension recommendation model

    模型校正R2预测R2备注
    Linear0.94400.9103建议采用
    2FI0.94320.8410
    Quadratic0.92140.5270
    Cubic0.9785
    下载: 导出CSV
  • [1] 杨科,魏祯,赵新元,等. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报,2021,46(增刊2):925−935. doi: 10.13225/j.cnki.jccs.st21.0284

    YANG Ke,WEI Zhen,ZHAO Xinyuan,et al. Theory and technology of green filling of solid waste in underground mine at coal power base of Yellow River Basin[J]. Journal of China Coal Society,2021,46(Sup.2):925−935. doi: 10.13225/j.cnki.jccs.st21.0284
    [2] 靳德武,王甜甜,赵宝峰,等. 宁东煤田东北部高矿化度地下水分布特征及形成机制[J]. 煤田地质与勘探,2022,50(7):118−127. doi: 10.12363/issn.1001-1986.21.10.0593

    JIN Dewu,WANG Tiantian,ZHAO Baofeng,et al. Distribution characteristics and formation mechanism of high salinity groundwater in northeast Ningdong Coalfield[J]. Coal Geology & Exploration,2022,50(7):118−127. doi: 10.12363/issn.1001-1986.21.10.0593
    [3] 王景升,李佳,陈宝雄,等. 宁夏东部能源化工基地煤炭产业生态风险评估[J]. 资源科学,2013,35(10):2011−2016.

    WANG Jingsheng,LI Jia,CHEN Baoxiong,et al. Coal mining ecological risk assessment of the energy chemical production base in Eastern Ningxia[J]. Resource Science,2013,35(10):2011−2016.
    [4] 王璐,于瑶,任会斌,等. 积存超600亿吨工业固废如何走出“埋埋埋”尴尬[J]. 资源再生,2020(6):40−42.

    WANG Lu,YU Yao,REN Huibin,et al. How to get rid of the embarrassment of“buried and buried”for the accumulation of over 60 billion tons of industrial solid waste[J]. Resource Recycling,2020(6):40−42.
    [5] 张新国,江宁,张玉江,等. 矸石膏体充填材料力学特性试验[J]. 金属矿山,2012(12):127−131. doi: 10.3969/j.issn.1001-1250.2012.12.033

    ZHANG Xinguo,JIANG Ning,ZHANG Yujiang,et al. Study on mechanical properties of coal waste paste filling materials[J]. Metal Mine,2012(12):127−131. doi: 10.3969/j.issn.1001-1250.2012.12.033
    [6] 王有志. 煤矸石–粉煤灰用作井下充填材料实验研究[J]. 有色金属工程,2020,10(11):108−113. doi: 10.3969/j.issn.2095-1744.2020.11.016

    WANG Youzhi. Experimental study on coal gangue–fly ash as underground filling material[J]. Nonferrous Metals Engineering,2020,10(11):108−113. doi: 10.3969/j.issn.2095-1744.2020.11.016
    [7] 唐岳松,张令非,吕华永,等. 煤基固废制备充填材料配比优化试验研究[J]. 矿业科学学报,2019,4(4):327−336. doi: 10.19606/j.cnki.jmst.2019.04.006

    TANG Yuesong,ZHANG Lingfei,LYU Huayong,et al. Study on proportion optimization of coal–based solid wastes filling materials[J]. Journal of Mining Science and Technology,2019,4(4):327−336. doi: 10.19606/j.cnki.jmst.2019.04.006
    [8] 崔增娣,孙恒虎. 煤矸石凝石似膏体充填材料的制备及其性能[J]. 煤炭学报,2010,35(6):896−899. doi: 10.13225/j.cnki.jccs.2010.06.007

    CUI Zengdi,SUN Henghu. The preparation and properties of coal gangue based sialite paste–like backfill material[J]. Journal of China Coal Society,2010,35(6):896−899. doi: 10.13225/j.cnki.jccs.2010.06.007
    [9] 程海勇,吴爱祥,王贻明,等. 粉煤灰–水泥基膏体微观结构分形表征及动力学特征[J]. 岩石力学与工程学报,2016,35(增刊2):4241−4248. doi: 10.13722/j.cnki.jrme.2015.1607

    CHENG Haiyong,WU Aixiang,WANG Yiming,et al. Fractal features and dynamical characters of the microstructure of paste backfill prepared from fly ash based binder[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup.2):4241−4248. doi: 10.13722/j.cnki.jrme.2015.1607
    [10] 李茂辉,杨志强,王有团,等. 粉煤灰复合胶凝材料充填体强度与水化机理研究[J]. 中国矿业大学学报,2015,44(4):650−655. doi: 10.13247/j.cnki.jcumt.000365

    LI Maohui,YANG Zhiqiang,WANG Youtuan,et al. Experiment study of compressive strength and mechanical property of filling body for fly ash composite cementitious materials[J]. Journal of China University of Mining & Technology,2015,44(4):650−655. doi: 10.13247/j.cnki.jcumt.000365
    [11] 杨宝贵,杨捷,于跃,等. 煤矿新型胶凝充填材料配比试验及水化机理研究[J]. 矿业科学学报,2017,2(5):475−481. doi: 10.19606/j.cnki.jmst.2017.05.009

    YANG Baogui,YANG Jie,YU Yue,et al. Study on proportioning test of a new cementing filling material and hydration mechanism[J]. Journal of Mining Science and Technology,2017,2(5):475−481. doi: 10.19606/j.cnki.jmst.2017.05.009
    [12] 赵康,黄明,严雅静,等. 不同灰砂比尾砂胶结充填材料组合体力学特性及协同变形研究[J]. 岩石力学与工程学报,2021,40(增刊1):2781−2789. doi: 10.13722/j.cnki.jrme.2020.0692

    ZHAO Kang,HUANG Ming,YAN Yajing,et al. Mechanical properties and synergistic deformation characteristics of tailings cemented filling assembled material body with different cement−tailings ratios[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup.1):2781−2789. doi: 10.13722/j.cnki.jrme.2020.0692
    [13] 温亮,阎长虹,张政,等. 水泥–粉煤灰–煤渣–吹填粉细砂混合料强度试验[J]. 煤田地质与勘探,2019,47(1):149−154. doi: 10.3969/j.issn.1001-1986.2019.01.023

    WEN Liang,YAN Changhong,ZHANG Zheng,et al. Test on the strength of the backfill fine sand mixture composed of cement−fly ash−cinder[J]. Coal Geology & Exploration,2019,47(1):149−154. doi: 10.3969/j.issn.1001-1986.2019.01.023
    [14] 李磊. 颚式破碎机能耗和齿板结构参数研究[D]. 长沙: 中南大学, 2009.

    LI Lei. Study on energy consumption and toothed plate structural parameters of jaw crusher[D]. Changsha: Central South University, 2009.
    [15] 刘智勇. 粉煤灰的经济价值和利用探讨[J]. 现代经济信息,2017(13):335. doi: 10.3969/j.issn.1001-828X.2017.13.278

    LIU Zhiyong. Discussion on economic value and utilization of fly ash[J]. Modern Economic Information,2017(13):335. doi: 10.3969/j.issn.1001-828X.2017.13.278
    [16] 张明, 院晓丽. 砼拌合物的坍落度和坍落扩展度之关系[J]. 建筑与发展, 2012.

    ZHANG Ming, YUAN Xiaoli. The relationship between slump and slump expansion of concrete mixture[J]. Architecture and Development, 2012.
    [17] 李典,冯国瑞,郭育霞,等. 基于响应面法的充填体强度增长规律分析[J]. 煤炭学报,2016,41(2):392−398. doi: 10.13225/j.cnki.jccs.2015.0240

    LI Dian,FENG Guorui,GUO Yuxia,et al. Analysis on the strength increase law of filling material based on response surface method[J]. Journal of China Coal Society,2016,41(2):392−398. doi: 10.13225/j.cnki.jccs.2015.0240
    [18] 张超,王星龙,李树刚,等. 基于响应面法治理煤矿硫化氢的改性碱液配比优化[J]. 煤炭学报,2020,45(8):2926−2932. doi: 10.13225/j.cnki.jccs.2020.0094

    ZHANG Chao,WANG Xinglong,LI Shugang,et al. Optimization of the ratio of modified alkaline solution for hydrogen sulfide treatment in coal mine based on response surface method[J]. Journal of China Coal Society,2020,45(8):2926−2932. doi: 10.13225/j.cnki.jccs.2020.0094
    [19] 唐海,赵海龙,黄靖龙,等. 煤矿膏体充填材料配比试验研究[J]. 华北科技学院学报,2015,12(4):43−47. doi: 10.3969/j.issn.1672-7169.2015.04.009

    TANG Hai,ZHAO Hailong,HUANG Jinglong,et al. Study on proportion experiment of paste filling material in coal mine[J]. Journal of North China Institute of Science and Technology,2015,12(4):43−47. doi: 10.3969/j.issn.1672-7169.2015.04.009
    [20] 徐文彬,潘卫东,丁明龙. 胶结充填体内部微观结构演化及其长期强度模型试验[J]. 中南大学学报(自然科学版),2015,46(6):2333−2341.

    XU Wenbin,PAN Weidong,DING Minglong. Experiment on evolution of microstructures and long–term strength model of cemented backfill mass[J]. Journal of Central South University (Science and Technology),2015,46(6):2333−2341.
    [21] 冯国瑞,任亚峰,张绪言,等. 塔山矿充填开采的粉煤灰活性激发实验研究[J]. 煤炭学报,2011,36(5):732−737. doi: 10.13225/j.cnki.jccs.2011.05.018

    FENG Guorui,REN Yafeng,ZHANG Xuyan,et al. The activating experimental research of fly ash for mining fillingmaterial in Tashan Mine[J]. Journal of China Coal Society,2011,36(5):732−737. doi: 10.13225/j.cnki.jccs.2011.05.018
    [22] 屈慧升,索永录,刘浪,等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报,2022,47(5):1958−1973.

    QU Huisheng,SUO Yonglu,LIU Lang,et al. Preparation and properties of modified coal gasification slag–based filling materials for mines[J]. Journal of China Coal Society,2022,47(5):1958−1973.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  4
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 修回日期:  2022-11-07
  • 刊出日期:  2022-12-25
  • 网络出版日期:  2022-12-10

目录

    /

    返回文章
    返回