留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤系固废基绿色充填材料制备及其性能研究

董猛 李江山 陈新 金佳旭 鲁龙钊

董猛,李江山,陈新,等. 煤系固废基绿色充填材料制备及其性能研究[J]. 煤田地质与勘探,2022,50(12):75−84 doi: 10.12363/issn.1001-1986.22.05.0384
引用本文: 董猛,李江山,陈新,等. 煤系固废基绿色充填材料制备及其性能研究[J]. 煤田地质与勘探,2022,50(12):75−84 doi: 10.12363/issn.1001-1986.22.05.0384
DONG Meng,LI Jiangshan,CHEN Xin,et al. Preparation of coal-series solid-waste-based green filling materials and their performance[J]. Coal Geology & Exploration,2022,50(12):75−84 doi: 10.12363/issn.1001-1986.22.05.0384
Citation: DONG Meng,LI Jiangshan,CHEN Xin,et al. Preparation of coal-series solid-waste-based green filling materials and their performance[J]. Coal Geology & Exploration,2022,50(12):75−84 doi: 10.12363/issn.1001-1986.22.05.0384

煤系固废基绿色充填材料制备及其性能研究

doi: 10.12363/issn.1001-1986.22.05.0384
基金项目: 中国科学院国际合作重点项目(115242KYSB20200002)
详细信息
    第一作者:

    董猛,1997年生,男,辽宁铁岭人,博士研究生,从事固废资源化方面研究. E-mail:cjdpzdm@163.com

    通信作者:

    李江山,1987年生,男,四川巴中人,博士,研究员,从事污染场地工程修复和固废资源化方面研究. E-mail:jsli@whrsm.ac.cn

  • 中图分类号: TD823

Preparation of coal-series solid-waste-based green filling materials and their performance

  • 摘要: 充填技术是绿色开采的重要组成部分,研发成本低廉、性能可靠、低碳环保的充填材料,是发展充填技术的关键。采用煤矸石(CG)和煤系偏高岭土(MK)为原材料制备煤系固废基绿色充填材料,探讨配合比和碱激发剂对充填材料强度以及流动度的影响,并结合X射线衍射(XRD)、傅里叶变换红外吸收光谱仪(FTIR)、热重分析(TG)和扫描电镜能谱分析(SEM-EDS)等表征手段,揭示充填强度发展机理。综合强度、流动性和环境指标,优化充填材料配比。研究结果表明:绿色充填材料体系中,煤系偏高岭土通过碱激发水化反应起到胶凝作用,体系强度随偏高岭土的增加呈线性增长,磨细的煤矸石充当惰性填料,协同Na2SiO3改善流动性。该充填材料主要水化产物为N―A―S―H和沸石,Si―O―Si发生聚解,随即四面体Al―O键部分取代Si―O键,由(SiO4)4−变成(AlO4)4−,进一步聚合形成Si―O―Al基团。当碱激发剂中Na2SiO3与NaOH比例为1∶1时,聚合程度最高。水化产物填充了煤矸石颗粒间孔隙,使基质致密,提高充填材料强度。综合指标评价推荐偏高岭土与煤矸石的配比为3∶7,此时不仅满足强度和流动性的要求,而且碳排放指数仅有0.257。本研究为开发成本低廉、性能可靠、低碳环保的充填材料提供新的思路,具有较好的实用性和经济性。

     

  • 图  原材料颗粒粒径级配曲线

    Fig. 1  Particle size distribution curves of raw material particles

    图  原材料矿物组成

    2θ—衍射角

    Fig. 2  Mineral composition of raw materials

    图  抗压强度实验样品制备

    Fig. 3  Preparation of samples used for compressive strength experiment

    图  不同龄期下试样的抗压强度

    Fig. 4  Compressive strength of samples at different ages

    图  试样的流动度

    Fig. 5  Fluidity of samples

    图  3 d和28 d龄期试样的XRD谱

    Fig. 6  XRD graph of samples at the ages of 3 d and 28 d

    图  不同偏高岭土掺量在不同减激发剂下的FTIR谱

    Fig. 7  FTIR graph of different mixing amounts of metakaolin under different alkali activators

    图  3 d龄期下试样的TG和DTG曲线

    Fig. 8  TG and DTG curves of samples at the age of 3 d

    图  28 d龄期下试样的TG和DTG曲线

    Fig. 9  TG and DTG curves of samples at the age of 28 d

    图  10  28 d龄期下试样的SEM-EDS图

    Fig. 10  SEM-EDS diagram of samples at the age of 28 d

    图  11  流动度和3 d龄期强度指标

    Fig. 11  Fluidity and strength indexes at the age of 3 d

    图  12  碳排放指标

    Fig. 12  Carbon emission index

    表  1  原材料的化学组成

    Table  1  Chemical composition of raw materials

    原材料各组成质量分数/%
    SiO2Al2O3Fe2O3CaONa2OSO3Loss
    偏高
    岭土
    54.2941.520.630.350.310.041.09
    煤矸石47.3521.853.224.860.715.693.09
    下载: 导出CSV

    表  2  原材料配比设计

    Table  2  Mix proportion design of raw materials

    编号各成分质量分数/%碱类型
    煤矸石偏高岭土碱外掺量Na2SiO3∶NaOH
    A13070101∶2
    A24060101∶2
    A35050101∶2
    A46040101∶2
    A57030101∶2
    A68020101∶2
    B13070101∶1
    B24060101∶1
    B35050101∶1
    B46040101∶1
    B57030101∶1
    B68020101∶1
    C13070102∶1
    C24060102∶1
    C35050102∶1
    C46040102∶1
    C57030102∶1
    C68020102∶1
    D13070103∶1
    D24060103∶1
    D35050103∶1
    D46040103∶1
    D57030103∶1
    D68020103∶1
    下载: 导出CSV

    表  3  原材料二氧化碳排放量

    Table  3  Carbon dioxide emissions of raw materials

    原材料MKCGNaOHNa2SiO3
    CO2排放量/(kg·m−3)0.4000.0791.301.86
    下载: 导出CSV
  • [1] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377.

    WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low–carbon of tar–rich coal as coal–based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377.
    [2] LI Jiayan,WANG Jinman. Comprehensive utilization and environmental risks of coal gangue:A review[J]. Journal of Cleaner Production,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946
    [3] ZHANG Yuanlan,LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement–based materials:A review[J]. Construction and Building Materials,2020,234:117424. doi: 10.1016/j.conbuildmat.2019.117424
    [4] BI Yinli,ZHANG Jian,SONG Ziheng,et al. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J]. Science of the Total Environment,2019,652:398−405. doi: 10.1016/j.scitotenv.2018.10.249
    [5] 马杰, 刘萍, 刘今朝, 等. 重庆市煤矸山周边农用地土壤重金属污染评价和定量溯源解析[J/OL]. 环境科学, 2022: 1–18[2022-04-26]. DOI: 10.13227/j. hjkx. 202202123.

    MA Jie, LIU Ping, LIU Jinzhao, et al. Pollution evaluation and quantitative traceability analysis of heavy metals in farmland soils around the gangue heap of coal mine, Chongqing[J/OL]. Environmental Science, 2022: 1–18[2022-04-26]. DOI: 10. 13227/j. hjkx. 202202123.
    [6] 白国良, 刘瀚卿, 刘辉, 等. 煤矸石理化特性及其对混凝土强度的影响[J/OL]. 建筑结构学报, 2022: 1–12[2022-04-20]. DOI: 10.14006/j. jzjgxb. 2021.0735.

    BAI Guoliang, LIU Hanqing, LIU Hui, et al. Physicochemical properties of coal gangue and its influence on concrete strength[J/OL]. Journal of Building Structures, 2022: 1–12[2022-04-20]. DOI: 10. 14006/j. jzjgxb. 2021. 0735.
    [7] 孙艳芳,赵丽,罗绍河,等. 不同地质年代煤矸石中有机质的溶出特征对比[J]. 煤田地质与勘探,2019,47(3):172−178. doi: 10.3969/j.issn.1001-1986.2019.03.027

    SUN Yanfang,ZHAO Li,LUO Shaohe,et al. Comparison of dissolution characteristics of organic matter in coal gangue of different geological time[J]. Coal Geology & Exploration,2019,47(3):172−178. doi: 10.3969/j.issn.1001-1986.2019.03.027
    [8] TAN W F,WANG L A,HUANG C. Environmental effects of coal gangue and its utilization[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2016,38(24):3716−3721.
    [9] QIN Ling,GAO Xiaojian. Properties of coal gangue–Portland cement mixture with carbonation[J]. Fuel,2019,245:1−12. doi: 10.1016/j.fuel.2019.02.067
    [10] ZHU Yuanyuan,ZHU Yingcan,WANG Aiguo,et al. Valorization of calcined coal gangue as coarse aggregate in concrete[J]. Cement and Concrete Composites,2021,121:104057. doi: 10.1016/j.cemconcomp.2021.104057
    [11] WANG Hao,JIAO Jian,WANG Yumin,et al. Feasibility of using gangue and fly ash as filling slurry materials[J]. Processes,2018,6(12):232. doi: 10.3390/pr6120232
    [12] 王川,刘超,裴文晶,等. 活化煤矸石制备路基充填材料的探讨[J]. 材料科学与工程学报,2022,40(1):97−103.

    WANG Chuan,LIU Chao,PEI Wenjing,et al. Discussion on the preparation of roadbed filling material with activated coal gangue[J]. Journal of Materials Science & Engineering,2022,40(1):97−103.
    [13] 张宗堂, 高文华, 刘昌平, 等. 级配对煤矸石路基填料压实与强度特性的影响试验研究[J/OL]. 工程地质学报, 2022: 1–8[2022-03-23]. DOI: 10.13544/j. cnki. jeg. 2021–0564.

    ZHANG Zongtang, GAO Wenhua, LIU Changping, et al. Experimental study on the effect of gradation on the compaction and strength characteristics of coal gangue subgrade filler[J/OL]. Journal of Engineering Geology, 2022: 1−8[2022-03-23]. DOI: 10. 13544/j. cnki. jeg. 2021–0564.
    [14] 张金山,孙春宝,曹钊,等. 煤系高岭岩制备偏高岭土实验研究[J]. 无机盐工业,2016,48(9):64−67.

    ZHANG Jinshan,SUN Chunbao,CAO Zhao,et al. Experimental research on preparation of metakaolin from coal kaolinite[J]. Inorganic Chemicals Industry,2016,48(9):64−67.
    [15] THANKAM G L,RENGANATHAN N T. Ideal supplementary cementing material−metakaolin:A review[J]. International Review of Applied Sciences and Engineering,2020,11(1):58−65. doi: 10.1556/1848.2020.00008
    [16] RAKHIMOVA N R,RAKHIMOV R Z. Reaction products,structure and properties of alkali–activated metakaolin cements incorporated with supplementary materials:A review[J]. Journal of Materials Research and Technology,2019,8(1):1522−1531. doi: 10.1016/j.jmrt.2018.07.006
    [17] TANG Jin,WEI Shuaifei,LI Weifeng,et al. Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement[J]. Construction and Building Materials,2019,223:177−184. doi: 10.1016/j.conbuildmat.2019.06.059
    [18] PILLAY D L,OLALUSI O B,AWOYERA P O,et al. A review of the engineering properties of metakaolin based concrete:Towards combatting chloride attack in coastal/marine structures[J]. Advances in Civil Engineering,2020,2020:8880974.
    [19] HE Peigang,CUI Jingyi,WANG Meiling,et al. Interplay between storage temperature,medium and leaching kinetics of hazardous wastes in metakaolin–based geopolymer[J]. Journal of Hazardous Materials,2020,384:121377. doi: 10.1016/j.jhazmat.2019.121377
    [20] LE V S,LOUDA P,TRAN H N,et al. Study on temperature–dependent properties and fire resistance of metakaolin–based geopolymer foams[J]. Polymers,2020,12(12):2994. doi: 10.3390/polym12122994
    [21] WU Hui,WEN Qingbo,HU Liming,et al. Feasibility study on the application of coal gangue as landfill liner material[J]. Waste Management,2017,63:161−171. doi: 10.1016/j.wasman.2017.01.016
    [22] KUMAR M L,REVATHI V. Microstructural properties of alkali–activated metakaolin and bottom ash geopolymer[J]. Arabian Journal for Science and Engineering,2020,45(5):4235−4246. doi: 10.1007/s13369-020-04417-6
    [23] RASHAD A M. Alkali–activated metakaolin:A short guide for civil engineer:An overview[J]. Construction and Building Materials,2013,41:751−765. doi: 10.1016/j.conbuildmat.2012.12.030
    [24] 中国煤炭工业协会. 煤矿膏体充填材料试验方法: NB/T 51070—2017[S]. 北京: 煤炭工业出版社, 2017.
    [25] MA Hongqiang,ZHU Hongguang,YI Cheng,et al. Preparation and reaction mechanism characterization of alkali–activated coal gangue–slag materials[J]. Materials,2019,12(14):2250. doi: 10.3390/ma12142250
    [26] KOOHESTANI B,DARBAN A K,MOKHTARI P. A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill[J]. Construction and Building Materials,2018,173:180−188. doi: 10.1016/j.conbuildmat.2018.03.265
    [27] YI Cheng,MA Hongqiang,CHEN Hongyu,et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials,2018,187:318−326. doi: 10.1016/j.conbuildmat.2018.07.220
    [28] LIU Yi,YANG Xiaohui,YAN Chunjie,et al. Solvent–free synthesis of zeolite LTA monolith with hierarchically porous structure from metakaolin[J]. Materials Letters,2019,248:28−31. doi: 10.1016/j.matlet.2019.03.135
    [29] LANCELLOTTI I,CATAURO M,PONZONI C,et al. Inorganic polymers from alkali activation of metakaolin:Effect of setting and curing on structure[J]. Journal of Solid State Chemistry,2013,200:341−348. doi: 10.1016/j.jssc.2013.02.003
    [30] 马宏强,易成,陈宏宇,等. 碱激发煤矸石–矿渣胶凝材料的性能和胶结机理[J]. 材料研究学报,2018,32(12):898−904.

    MA Hongqiang,YI Cheng,CHEN Hongyu,et al. Property and cementation mechanism of alkali–activated coal gangue–slag cementitious materials[J]. Chinese Journal of Materials Research,2018,32(12):898−904.
    [31] CHAIPANICH A,WIANGLOR K,PIYAWORAPAIBOON M,et al. Thermogravimetric analysis and microstructure of alkali–activated metakaolin cement pastes[J]. Journal of Thermal Analysis and Calorimetry,2019,138(3):1965−1970. doi: 10.1007/s10973-019-08592-z
    [32] CAO Zhao,CAO Yongdan,DONG Hongjuan,et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing,2016,146:23−28. doi: 10.1016/j.minpro.2015.11.008
    [33] SAMSON G,CYR M,GAO Xiaoxiao. Formulation and characterization of blended alkali−activated materials based on flash−calcined metakaolin,fly ash and GGBS[J]. Construction and Building Materials,2017,144:50−64. doi: 10.1016/j.conbuildmat.2017.03.160
    [34] 李国富,张为,李猛,等. 沁水盆地寺家庄区块煤储层含气性及产能控制因素[J]. 煤田地质与勘探,2022,50(3):146−155.

    LI Guofu,ZHANG Wei,LI Meng,et al. Gas content and productivity controlling factors of coal reservoir in Sijiazhuang area,Qinshui Basin[J]. Coal Geology & Exploration,2022,50(3):146−155.
    [35] 姚俊耀,李志立,左迪. 条带开采嗣后充填法充填膏体强度设计及工程应用[J]. 采矿技术,2019,19(5):27−29.

    YAO Junyao,LI Zhili,ZUO Di. Strip mining is made between flat–back cut and fill method filling paste strength design and engineering application[J]. Mining Technology,2019,19(5):27−29.
    [36] QI Chongchong,FOURIE A. Cemented paste backfill for mineral tailings management:Review and future perspectives[J]. Minerals Engineering,2019,144:106025. doi: 10.1016/j.mineng.2019.106025
    [37] LONG Guangcheng,GAO Yu,XIE Youjun. Designing more sustainable and greener self–compacting concrete[J]. Construction and Building Materials,2015,84:301−306. doi: 10.1016/j.conbuildmat.2015.02.072
    [38] ZHANG Junyi,CHEN Tiefeng,GAO Xiaojian. Incorporation of self−ignited coal gangue in steam cured precast concrete[J]. Journal of Cleaner Production,2021,292:126004. doi: 10.1016/j.jclepro.2021.126004
    [39] OUFFA N,TRAUCHESSEC R,BENZAAZOUA M,et al. A methodological approach applied to elaborate alkali−activated binders for mine paste backfills[J]. Cement and Concrete Composites,2022,127:104381. doi: 10.1016/j.cemconcomp.2021.104381
    [40] MA Cong,ZHAO Bin,WANG Luming,et al. Clean and low–alkalinity one–part geopolymeric cement:Effects of sodium sulfate on microstructure and properties[J]. Journal of Cleaner Production,2020,252:119279. doi: 10.1016/j.jclepro.2019.119279
    [41] SHI Jinyan,TAN Jinxia,LIU Baoju,et al. Experimental study on full−volume slag alkali−activated mortars:Air−cooled blast furnace slag versus machine−made sand as fine aggregates[J]. Journal of Hazardous Materials,2021,403:123983. doi: 10.1016/j.jhazmat.2020.123983
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  6
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-10-14
  • 刊出日期:  2022-12-25
  • 网络出版日期:  2022-11-28

目录

    /

    返回文章
    返回