留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基础工程浆液资源化综合利用技术

谢辉 叶井亮 陈娟 薛曼 胡慧聪 杨现禹 蔡记华

谢辉,叶井亮,陈娟,等. 基础工程浆液资源化综合利用技术[J]. 煤田地质与勘探,2022,50(12):177−184. doi: 10.12363/issn.1001-1986.22.04.0250
引用本文: 谢辉,叶井亮,陈娟,等. 基础工程浆液资源化综合利用技术[J]. 煤田地质与勘探,2022,50(12):177−184. doi: 10.12363/issn.1001-1986.22.04.0250
XIE Hui,YE Jingliang,CHEN Juan,et al. Comprehensive recycling utilization technology of foundation engineering slurry[J]. Coal Geology & Exploration,2022,50(12):177−184. doi: 10.12363/issn.1001-1986.22.04.0250
Citation: XIE Hui,YE Jingliang,CHEN Juan,et al. Comprehensive recycling utilization technology of foundation engineering slurry[J]. Coal Geology & Exploration,2022,50(12):177−184. doi: 10.12363/issn.1001-1986.22.04.0250

基础工程浆液资源化综合利用技术

doi: 10.12363/issn.1001-1986.22.04.0250
基金项目: 武汉誉城千里建工有限公司科技创新项目(2021056333)
详细信息
    第一作者:

    谢辉, 1978年生,男,湖北武汉人,工程师,从事市政工程管理工作. E-mail:15706330@qq.com

    通信作者:

    杨现禹,1992年生,男,山东日照人,副教授,从事钻井液与井壁稳定、离散元流体动力学等方面的教学与研究工作. E-mail:yxy@cug.edu.cn

    蔡记华, 1978年生,男,湖北浠水人,博士,教授,博士生导师,从事钻井液、工程浆液和完井液等方面的教学与研究工作.E-mail:caijh@cug.edu.cn

  • 中图分类号: X703.1

Comprehensive recycling utilization technology of foundation engineering slurry

  • 摘要: 地下连续墙、水平定向钻、盾构和顶管等领域的基础工程浆液具有用量大、污染物较为单一的特点。随着国家各项环保法规的实施,基础工程浆液的综合处理尤为重要。提出一种基础工程浆液资源化综合利用技术,即循环浆液采用“除砂+净化浆液与钻渣综合利用”技术,废弃浆液采用“除钙+降低pH+絮凝分离+压滤处理+废液与泥饼的综合利用”技术。以武汉市某地下连续墙工程现场浆液为研究对象,研究循环浆液和废弃浆液的资源化综合利用效果。结果表明:(1) 循环浆液经过除砂后得到净化浆液和钻渣,前者可重新用于工程施工中,后者可用于培育披碱草、黑麦草等草籽,发芽率为100%。(2) 加入5%的碳酸氢钠可将废弃浆液Ca2+质量浓度从703.5 mg/L降低至173.6 mg/L,加入质量分数为3.3%的氯化铵可将pH值从13降低至9,加入300 mg/L的絮凝剂A-2可得到明显的絮凝物。絮凝物经过压滤后得到废液和泥饼,在废液中加入质量分数为2%的碳酸氢钠后可用于重新配制工程浆液,泥饼与30%~60%的营养土混合后可进行草籽培育,发芽率为72%。(3) 过量的盐离子和高pH会对植物生长产生毒害作用,应先对废弃浆液进行除钙和降低pH等处理,之后压滤得到的泥饼才能满足植物生长要求。该技术可实现基础工程浆液中所有钻渣(或泥饼)和净化后的浆液(或废液)的资源化综合利用,对类似工程浆液的资源化利用有较好的启示意义,具有显著的经济、环境和社会效益。

     

  • 图  草籽的发芽天数和发芽率

    Fig. 1  Germination days and rates of grass seeds cultivated with drilling cuttings

    图  草籽在第10天生长情况

    Fig. 2  Growth situation of grass seeds cultivated with drilling cuttings on the 10th day

    图  除钙剂对废弃浆液上清液中Ca2+质量浓度的影响

    Fig. 3  Effect of calcium removal additive on the calcium concentration of the liquid supernatant of waste slurry

    图  不同NH4Cl溶液加量对废弃浆液pH值的影响

    Fig. 4  Effect of NH4Cl solution volume on the pH of waste slurry

    图  添加絮凝剂A-1和A-2后废弃浆液6 h后的沉降效果

    Fig. 5  Settlement effect of waste slurry in addition of flocculant A-1 and A-2 for 6 hours

    图  添加絮凝剂A-2后废弃浆液6 h后的沉降效果

    Fig. 6  Settlement effect of waste slurry in addition of flocculant A-2 for 6 hours

    图  添加A-1和A-2后废弃浆液的絮凝效果对比

    Fig. 7  Comparison of the floculation effect of flocculant A-1 and A-2 to waste slurry

    图  用泥饼培育的草籽在第10天生长情况

    Fig. 8  Growth situation of grass seeds cultivated with mud cake on the 10th day

    表  1  三种基础工程浆液的基本性能

    Table  1  Basic properties of three kinds of foundation engineering slurry

    浆液类型密度/(g·cm−3)pH塑性黏度/(mPa·s−1)动切力/Pa失水量/mLCa2+质量浓度/(mg·L−1)蒙脱石质量分数/%
    新鲜浆液1.03811.05.618.734.11.047
    循环浆液1.1987.01.530.0128.50.261
    废弃浆液1.08135.12.062.0703.50.209
    下载: 导出CSV

    表  2  草籽培育实验设计方案

    Table  2  Experiments plan for grass seed cultivation

    草籽实验
    编号
    营养土
    质量分数/%
    草籽实验
    编号
    营养土
    质量分数/%


    YP10

    LP10
    YP210LP210
    YP320LP320
    YP430LP430
    YP540LP540
    YP650LP650
    YP760LP760
    YP880LP880
    YP9100LP9100


    YH10

    LH10
    YH210LH210
    YH320LH320
    YH430LH430
    YH540LH540
    YH650LH650
    YH760LH760
    YH880LH880
    YH9100LH9100
      注:YP为“钻渣+披碱草”,YH为“钻渣+黑麦草”,LP为“泥饼+披碱草”,LH为“泥饼+黑麦草”的培育方式。
    下载: 导出CSV

    表  3  净化后浆液的基本性能

    Table  3  Basic properties of purified mud

    密度/(g·cm−3)pH塑性黏度/(mPa·s−1)动切力/Pa失水量/mLCa2+质量浓度/(mg·L−1)蒙脱石质量分数/%
    1.08871.52660.40.372
    下载: 导出CSV

    表  4  利用废液配制工程浆液的基本性能

    Table  4  Basic properties of foundation slurry based on wastewater

    配制的工程浆液密度/(g·cm−3)pH塑性黏度/(mPa·s−1)动切力/Pa失水量/mLCa2+质量浓度/(mg·L−1)
    废液+3.6%膨润土1.0486425103.4
    下载: 导出CSV

    表  5  利用废液配制基础工程浆液的除钙效果

    Table  5  Calcium removal effect of foundation engineering slurry based on wastewater

    NaHCO3加量/%上清液中的Ca2+质量浓度/(mg·L−1)
    176.1
    234.0
    316.0
    下载: 导出CSV
  • [1] 房凯,张忠苗,刘兴旺,等. 工程废弃泥浆污染及其防治措施研究[J]. 岩土工程学报,2011,33(增刊2):238−241.

    FANG Kai,ZHANG Zhongmiao,LIU Xingwang,et al. Pollution of construction waste slurry and prevention measures[J]. Chinese Journal of Geotechnical Engineering,2011,33(Sup.2):238−241.
    [2] 郑亮,刘晓烨,潘希军,等. 武汉地区建筑废弃泥浆泥水分离试验研究[J]. 钻探工程,2021,48(8):110−117.

    ZHENG Liang,LIU Xiaoye,PAN Xijun,et al. Experiment on separation of mud and water from construction waste mud in the Wuhan area[J]. Drilling Engineering,2021,48(8):110−117.
    [3] 武亚军,陆逸天,牛坤,等. 药剂真空预压法处理工程废浆试验[J]. 岩土工程学报,2016,38(8):1365−1373.. doi: 10.11779/CJGE201608002

    WU Yajun,LU Yitian,NIU Kun,et al. Experimental study on solid–liquid separation of construction waste slurry by additive agent–combined vacuum preloading[J]. Chinese Journal of Geotechnical Engineering,2016,38(8):1365−1373.. doi: 10.11779/CJGE201608002
    [4] 田浩,赵会军. 废弃油基泥浆处理工艺与研究[J]. 环境工程,2014,32(增刊1):310−313.. doi: 10.13205/j.hjgc.2014.s1.066

    TIAN Hao,ZHAO Huijun. Waste oil–based mud treatment technology and research[J]. Environmental Engineering,2014,32(Sup.1):310−313.. doi: 10.13205/j.hjgc.2014.s1.066
    [5] 刘宪斌,刘青. 生物法修复废弃钻井泥浆和含油污泥的研究进展[J]. 环境污染与防治,2015,37(6):83−89.. doi: 10.15985/j.cnki.1001-3865.2015.06.016

    LIU Xianbin,LIU Qing. Research on the bioremediation of waste drilling mud and oily sludge[J]. Environmental Pollution & Control,2015,37(6):83−89.. doi: 10.15985/j.cnki.1001-3865.2015.06.016
    [6] HE Jia,CHU Jian,TAN S K,et al. Sedimentation behavior of flocculant–treated soil slurry[J]. Marine Georesources & Geotechnology,2017,35(5):593−602.
    [7] 罗伟. 钻井废弃泥浆固化路基材料性能研究[D]. 成都: 西南石油大学, 2015.

    LUO Wei. Study on the properties of solidified subgrade materials from drilling waste mud[D]. Chengdu: Southwest Petroleum University, 2015.
    [8] 李冲,吕志刚,陈洪龄,等. 阴离子型聚丙烯酰胺在废弃桩基泥浆处理中的应用[J]. 环境科技,2012,25(1):33−37.. doi: 10.3969/j.issn.1674-4829.2012.01.009

    LI Chong,LYU Zhigang,CHEN Hongling,et al. Application of anionic polyacrylamide in treating waste slurry from pile foundation engineering[J]. Environmental Science and Technology,2012,25(1):33−37.. doi: 10.3969/j.issn.1674-4829.2012.01.009
    [9] 梁止水,杨才千,高海鹰,等. 建筑工程废弃泥浆快速泥水分离试验研究[J]. 东南大学学报(自然科学版),2016,46(2):427−433.

    LIANG Zhishui,YANG Caiqian,GAO Haiying,et al. Experimental study on rapid separation between water and slurry from construction engineering[J]. Journal of Southeast University (Natural Science Edition),2016,46(2):427−433.
    [10] 杨春英,徐薇,白晨光. 施工废弃泥浆絮凝脱水试验及机理分析[J]. 环境科技,2013,26(5):15−17.. doi: 10.3969/j.issn.1674-4829.2013.05.004

    YANG Chunying,XU Wei,BAI Chenguang. The mud flocculation dehydration test and mechanism analysis[J]. Environmental Science and Technology,2013,26(5):15−17.. doi: 10.3969/j.issn.1674-4829.2013.05.004
    [11] ZHANG Fengjun,CUI Kong,SUN Xianyang,et al. Study on preparation and properties of novel ternary flocculant for rapid separation of underground continuous wall waste mud[J]. Pigment & Resin Technology,2020,49(6):421−429.
    [12] 刘福田, 宋生辉, 刘祥勇. 一种水泥基速凝型高水废弃泥浆用固化剂: CN102491720A[P]. 2012-06-13.
    [13] 田淼, 信忠虎, 彭忠欢. 一种钻孔灌注桩泥浆固化处理系统及固化外运施工方法: CN114031249A[P]. 2022-02-11.
    [14] 杨石飞, 解子军, 李冬来, 等. 一种用于固化处理废弃泥浆的固化剂及其应用方法: CN107162516A[P]. 2017-09-15.
    [15] 孙平贺, 邢世宽, 赵明哲, 等. 一种基础工程废弃泥浆高效脱水固化处理剂及其使用方法: CN113735412A[P]. 2021-12-03.
    [16] 姜玉松,陈丽华. 利用废弃钻井泥浆作为注浆浆液的试验研究[J]. 安徽理工大学学报 (自然科学版),2011,31(4):28−32.

    JIANG Yusong,CHEN Lihua. Test of using waste drilling slurry as grouting slurry[J]. Journal of Anhui University of Science and Technology (Natural Science),2011,31(4):28−32.
    [17] 陈振国,徐润,高岗荣. 钻井废弃泥浆用作注浆材料的研究[J]. 煤炭学报,2011,36(1):49−53.. doi: 10.13225/j.cnki.jccs.2011.01.032

    CHEN Zhenguo,XU Run,GAO Gangrong. Research on waste drilling mud being used in grouting[J]. Journal of China Coal Society,2011,36(1):49−53.. doi: 10.13225/j.cnki.jccs.2011.01.032
    [18] 杨钊, 屠柳青, 翟世鸿, 等. 采用盾构废弃泥浆制备的盾构同步注浆浆液及其施工方法: CN106977153A[P]. 2017-07-25.
    [19] 王建华. 泥水盾构废弃砂土和尾水资源化综合利用技术[J]. 铁道建筑,2021,61(3):60−64.. doi: 10.3969/j.issn.1003-1995.2021.03.14

    WANG Jianhua. Comprehensive utilization technology on treated waste sand and tail water resources for slurry shield[J]. Railway Engineering,2021,61(3):60−64.. doi: 10.3969/j.issn.1003-1995.2021.03.14
    [20] 石慧芳,陆锦优子,韩卓锐,等. 钙对多花黑麦草种子萌发和幼苗生长的影响[J]. 种子,2019,38(9):105−108.

    SHI Huifang,LU Jinyouzi,HAN Zhuorui,et al. The effect of calcium on seed germination and seedling growth of lolium multiflorum lam[J]. Seed,2019,38(9):105−108.
    [21] 周敏. 喀斯特森林树种种子萌发特征——外源Ca2+作用[D]. 贵阳: 贵州师范大学, 2007.

    ZHOU Min. Characteristics of seed germination of Karst forest plants: Role of exteral Ca2+[D]. Guiyang: Guizhou Normal University, 2007.
    [22] 何才华. 中国地貌与贵州岩溶生态环境[J]. 贵州师范大学学报(自然科学版),2000,18(3):1−7.

    HE Caihua. The landforms of China and the Karst ecological environment in Guizhou[J]. Journal of Guizhou Normal University (Natural Science),2000,18(3):1−7.
    [23] 杨晓慧,蒋卫杰,魏珉,等. 植物对盐胁迫的反应及其抗盐机理研究进展[J]. 山东农业大学学报 (自然科学版),2006,37(2):302−305.

    YANG Xiaohui,JIANG Weijie,WEI Min,et al. Review on plant response and resistance mechanism to salt stress[J]. Journal of Shandong Agricultural University (Natural Science),2006,37(2):302−305.
    [24] WANG Lixue,FANG Cheng,WANG Kun. Physiological responses of leymus chinensis to long–term salt,alkali and mixed salt–alkali stresses[J]. Journal of Plant Nutrition,2015,38(4):526−540.. doi: 10.1080/01904167.2014.937874
    [25] 任鹏飞,尚丽霞,蔡勤安,等. 植物耐碱性研究进展及其在大豆中的应用展望[J]. 大豆科学,2019,38(6):977−985.

    REN Pengfei,SHANG Lixia,CAI Qin’an,et al. Research progress of plant alkali tolerance and its application prospect in soybean[J]. Soybean Science,2019,38(6):977−985.
    [26] GONG Biao,WANG Xiufeng,WEI Min,et al. Overexpression of S–adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross–linked networks[J]. Plant Cell,Tissue and Organ Culture (PCTOC),2016,124(2):377−391.
    [27] MA Hongyuan, YANG Haoyu, LYU Xiaotao, et al. Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with leymus chinensis (Poaceae)[J]. Plant and Soil, 2015, 394(1/2): 35–43.
    [28] 颜宏,赵伟,盛艳敏,等. 碱胁迫对羊草和向日葵的影响[J]. 应用生态学报,2005,16(8):1497−1501.. doi: 10.3321/j.issn:1001-9332.2005.08.022

    YAN Hong,ZHAO Wei,SHENG Yanmin,et al. Effects of alkali−stress on Aneurolepidium chinense and Helianthus annuus[J]. Chinese Journal of Applied Ecology,2005,16(8):1497−1501.. doi: 10.3321/j.issn:1001-9332.2005.08.022
    [29] 孙浩,李茂林,崔瑞,等. 剪切环境下某铅锌尾矿絮团演化过程及絮团表征[J]. 矿产保护与利用,2020,40(4):75−81.. doi: 10.13779/j.cnki.issn1001-0076.2020.04.009

    SUN Hao,LI Maolin,CUI Rui,et al. Floc evolution and characterization of lead–zinc tailing in shearing environment[J]. Conservation and Utilization of Mineral Resources,2020,40(4):75−81.. doi: 10.13779/j.cnki.issn1001-0076.2020.04.009
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  15
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-07-03
  • 刊出日期:  2022-12-25
  • 网络出版日期:  2022-11-30

目录

    /

    返回文章
    返回