留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙陕深埋矿区工作面涌水量全生命周期演化规律

刘洋 杨建 周建军

刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律[J]. 煤田地质与勘探,2022,50(12):152−158. doi: 10.12363/issn.1001-1986.22.03.0136
引用本文: 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律[J]. 煤田地质与勘探,2022,50(12):152−158. doi: 10.12363/issn.1001-1986.22.03.0136
LIU Yang,YANG Jian,ZHOU Jianjun. Evolution law of water inflow in full life cycle of working face in deep buried Inner Mongolia-Shaanxi mining area[J]. Coal Geology & Exploration,2022,50(12):152−158. doi: 10.12363/issn.1001-1986.22.03.0136
Citation: LIU Yang,YANG Jian,ZHOU Jianjun. Evolution law of water inflow in full life cycle of working face in deep buried Inner Mongolia-Shaanxi mining area[J]. Coal Geology & Exploration,2022,50(12):152−158. doi: 10.12363/issn.1001-1986.22.03.0136

蒙陕深埋矿区工作面涌水量全生命周期演化规律

doi: 10.12363/issn.1001-1986.22.03.0136
基金项目: 陕西省重点研发计划项目(2022SF-046);中煤科工集团西安研究院有限公司创新基金顶层设计项目(2020XAYDC03);中煤科工集团西安研究院有限公司创新基金技术研究项目(2020XAYJS05)
详细信息
    第一作者:

    刘洋,1978年生,男,江苏盐城人,博士,研究员,从事煤矿防治水科学研究和工程实践. E-mail:liuyang@cctegxian.com

    通信作者:

    杨建,1979年生,男,江苏盐城人,博士,研究员,从事煤矿防治水研究. E-mail:yangjian@cctegxian.com

  • 中图分类号: TD754

Evolution law of water inflow in full life cycle of working face in deep buried Inner Mongolia-Shaanxi mining area

  • 摘要: 蒙陕深埋矿区属于新开发矿区,煤炭开采扰动下水文地质特征仍不清楚,基建和生产过程中发生了多种类型的水害问题,其中工作面回采过程中和回采结束后的涌水变化特征研究处于空白,给井下排水系统设置和防治水工作开展增加了难度。为查清工作面回采前后的全生命周期涌水量演化规律,开展顶板含水层分布、导水裂隙带发育、涌水量变化等方面的实测研究。结果表明:煤层顶板地层均属于河流/河湖相沉积,空间上呈含隔水层互层状展布,隔水层的主要岩性为泥岩、砂质泥岩;受控于鄂尔多斯盆地伊陕斜坡的单斜构造,含煤地层高程在蒙陕接壤区最低,其顶板侏罗纪煤系含水层属于区域性地下水滞流区。煤层顶板地层在中生代沉积旋回作用下,发育了3层直接充水含水层,其中直罗组七里镇砂岩(Ⅰ号含水层)距离3-1煤层顶板77.4~109.4 m,呈富水强、水压高的特点;导水裂隙带实测高度为103.4 m,裂采比18.8,工作面回采过程中导水裂隙带将发育至Ⅰ号含水层。工作面回采前期,随着导水裂隙带向上发育沟通不同含水层,采空区涌水量呈阶段性增加,工作面回采至300 m左右,采空区涌水出现第一个峰值;工作面回采中后期,导水裂隙带持续周期性发育,导致顶板含水层破坏范围不断扩大,采空区涌水量仍呈台阶式增加;工作面回采结束前后,采空区范围内顶板导水裂隙带发育最强烈、范围最大,出现采空区涌水量最高值;工作面回采结束后,在其顶板隔水层中泥质组分的自弥合作用下,隔水层逐渐再造,导水裂隙宽度变窄、数量变少,采空区涌水量“缓坡式”衰减(每小时几十立方米以内)。对工作面涌水量实现全生命周期演化规律掌握,可以为蒙陕深埋矿区井下工作面防治水工作提供科学依据。

     

  • 图  蒙陕深埋矿区位置和地貌

    Fig. 1  Location and landform of deep buried mining area in Inner Mongolia and Shaanxi

    图  研究区某矿井工作面布置

    Fig. 2  Underground working faces distribution in one coal mine of the study area

    图  煤层顶板柱状图

    Fig. 3  Column diagram of the coal seam roof

    图  01工作面回采前期导水裂隙带和涌水量关系

    Fig. 4  Relationship between water diversion fracture zone and water inflow in early stage of mining in working face 01

    图  工作面回采过程中覆岩破坏

    Fig. 5  Overburden failure in the process of mining in working face

    图  01工作面回采中后期涌水量变化曲线

    Fig. 6  Variation curve of water inflow in the middle and late stage of mining in working face 01

    图  顶板隔水层再造

    Fig. 7  Roof waterproof layer reconstruction

    图  01工作面回采结束后涌水量变化曲线

    Fig. 8  Variation curve of water inflow after mining in working face 01

    图  01工作面全生命周期涌水量变化曲线

    Fig. 9  Variation curve of water inflow in full cycle of working face 01

    图  10  02工作面全生命周期涌水量变化曲线

    Fig. 10  Variation curve of water inflow in full life cycle of working face 02

  • [1] 顾大钊,张勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术,2016,44(1):1−7.. doi: 10.13199/j.cnki.cst.2016.01.001

    GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1−7.. doi: 10.13199/j.cnki.cst.2016.01.001
    [2] 武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636.. doi: 10.13225/j.cnki.jccs.2019.0387

    WU Qiang,TU Kun,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society,2019,44(6):1625−1636.. doi: 10.13225/j.cnki.jccs.2019.0387
    [3] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报,2011,30(4):544−552.. doi: 10.3969/j.issn.1671-2552.2011.04.011

    WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China,2011,30(4):544−552.. doi: 10.3969/j.issn.1671-2552.2011.04.011
    [4] 黄文辉,敖卫华,翁成敏,等. 鄂尔多斯盆地侏罗纪煤的煤岩特征及成因分析[J]. 现代地质,2010,24(6):1186−1197.. doi: 10.3969/j.issn.1000-8527.2010.06.022

    HUANG Wenhui,AO Weihua,WENG Chengmin,et al. Characteristics of coal petrology and genesis of Jurassic coal in Ordos Basin[J]. Geoscience,2010,24(6):1186−1197.. doi: 10.3969/j.issn.1000-8527.2010.06.022
    [5] 马良. 煤中硫分布特征及其沉积成因研究:以鄂尔多斯盆地榆横矿区南区为例[J]. 煤炭科学技术,2020,48(8):200−209.. doi: 10.13199/j.cnki.cst.2020.08.025

    MA Liang. Study on distribution characteristics and sedimentary genesis of sulfur in coal:Taking southern yuheng mining area of Ordos Basin as a case[J]. Coal Science and Technology,2020,48(8):200−209.. doi: 10.13199/j.cnki.cst.2020.08.025
    [6] 张子良. 巴彦高勒煤矿3–1煤层的煤岩煤质特性及利用途径分析[J]. 煤质技术,2018(1):7−11.. doi: 10.3969/j.issn.1007-7677.2018.01.003

    ZHANG Ziliang. Coal petrography coal quality characteristics and utilization pathway analysis on Bayangaole Coal Mine 3-1 coal seam[J]. Coal Quality Technology,2018(1):7−11.. doi: 10.3969/j.issn.1007-7677.2018.01.003
    [7] 李振宏,董树文,冯胜斌,等. 鄂尔多斯盆地中–晚侏罗世构造事件的沉积响应[J]. 地球学报,2015,36(1):22−30.. doi: 10.3975/cagsb.2015.01.03

    LI Zhenhong,DONG Shuwen,FENG Shengbin,et al. Sedimentary response to Middle–Late Jurassic tectonic events in the Ordos Basin[J]. Acta Geoscientica Sinica,2015,36(1):22−30.. doi: 10.3975/cagsb.2015.01.03
    [8] 李向平,陈刚,章辉若,等. 鄂尔多斯盆地中生代构造事件及其沉积响应特点[J]. 西安石油大学学报(自然科学版),2006,21(3):1−4.

    LI Xiangping,CHEN Gang,ZHANG Huiruo,et al. Mesozoic tectonic events in Ordos Basin and their sedimentary responses[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2006,21(3):1−4.
    [9] 赵俊峰,刘池洋,赵建设,等. 鄂尔多斯盆地侏罗系直罗组沉积相及其演化[J]. 西北大学学报(自然科学版),2008,38(3):480−486.. doi: 10.16152/j.cnki.xdxbzr.2008.03.022

    ZHAO Junfeng,LIU Chiyang,ZHAO Jianshe,et al. Sedimentary facies and its evolution of Jurassic Zhiluo Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2008,38(3):480−486.. doi: 10.16152/j.cnki.xdxbzr.2008.03.022
    [10] 杨建,刘洋,刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全,2018,49(4):34−37.. doi: 10.13347/j.cnki.mkaq.2018.04.009

    YANG Jian,LIU Yang,LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines,2018,49(4):34−37.. doi: 10.13347/j.cnki.mkaq.2018.04.009
    [11] 王洋,武强,丁湘,等. 深埋侏罗系煤层顶板水害源头防控关键技术[J]. 煤炭学报,2019,44(8):2449−2459.

    WANG Yang,WU Qiang,DING Xiang,et al. Key technologies for prevention and control of roof water disaster at sources in deep Jurassic seams[J]. Journal of China Coal Society,2019,44(8):2449−2459.
    [12] 杨建. 蒙陕接壤区深埋型煤层顶板水文地质及水文地球化学特征[J]. 煤矿安全,2016,47(10):176−179.. doi: 10.13347/j.cnki.mkaq.2016.10.047

    YANG Jian. Hydrogeological and hydrogeochemical characteristics of deep buried coal seam roof in Shaanxi and Inner Mongolia contiguous area[J]. Safety in Coal Mines,2016,47(10):176−179.. doi: 10.13347/j.cnki.mkaq.2016.10.047
    [13] 洪益青,祁和刚,丁湘,等. 蒙陕矿区深部侏罗纪煤田顶板水害防控技术现状与展望[J]. 中国煤炭地质,2017,29(12):55−58.. doi: 10.3969/j.issn.1674-1803.2017.12.11

    HONG Yiqing,QI Hegang,DING Xiang,et al. Status quo and prospect of Jurassic Coalfield deep part roof water hazard control technology in Inner Mongolia and Shaanxi mining areas[J]. Coal Geology of China,2017,29(12):55−58.. doi: 10.3969/j.issn.1674-1803.2017.12.11
    [14] 杨建,梁向阳,刘基. 封闭不良天然气孔突水过程的水文地球化学特征[J]. 煤田地质与勘探,2017,45(5):82−86.. doi: 10.3969/j.issn.1001-1986.2017.05.015

    YANG Jian,LIANG Xiangyang,LIU Ji. Hydrogeochemical characteristics during water inrush of poorly sealed gas hole[J]. Coal Geology & Exploration,2017,45(5):82−86.. doi: 10.3969/j.issn.1001-1986.2017.05.015
    [15] 陈卫军. 鄂尔多斯西部煤矿冲击地压治理技术研究[J]. 煤炭科学技术,2018,46(10):99−104.. doi: 10.13199/j.cnki.cst.2018.10.015

    CHEN Weijun. Study on control technology of rockburst in coal mines of western Erdos[J]. Coal Science and Technology,2018,46(10):99−104.. doi: 10.13199/j.cnki.cst.2018.10.015
    [16] 杨建,刘基,黄浩,等. 鄂尔多斯盆地北部深埋区“地貌–沉积”控水关键要素研究[J]. 地球科学进展,2019,34(5):523−530.. doi: 10.11867/j.issn.1001-8166.2019.05.0523

    YANG Jian,LIU Ji,HUANG Hao,et al. Key groundwater control factors of deep buried coalfield by landform and sedimentation in the northern Ordos Basin[J]. Advances in Earth Science,2019,34(5):523−530.. doi: 10.11867/j.issn.1001-8166.2019.05.0523
    [17] 杨建,王皓,梁向阳,等. 鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法[J]. 煤田地质与勘探,2021,49(4):185−191.. doi: 10.3969/j.issn.1001-1986.2021.04.022

    YANG Jian,WANG Hao,LIANG Xiangyang,et al. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin,China[J]. Coal Geology & Exploration,2021,49(4):185−191.. doi: 10.3969/j.issn.1001-1986.2021.04.022
    [18] 虎维岳,姬亚东,黄欢. 煤层顶板承压含水层涌水模式与疏放水钻孔优化设计[J]. 煤田地质与勘探,2021,49(5):139−146.

    HU Weiyue,JI Yadong,HUANG Huan. Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam[J]. Coal Geology & Exploration,2021,49(5):139−146.
    [19] 薛建坤,王皓,赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J]. 采矿与安全工程学报,2020,37(6):1222−1230.

    XUE Jiankun,WANG Hao,ZHAO Chunhu,et al. Prediction of the height of water−conducting fracture zone and water−filling model of roof aquifer in Jurassic Coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering,2020,37(6):1222−1230.
    [20] 李文平,王启庆,李小琴. 隔水层再造:西北保水采煤关键隔水层N2红土工程地质研究[J]. 煤炭学报,2017,42(1):88−97.

    LI Wenping,WANG Qiqing,LI Xiaoqin. Reconstruction of aquifuge:The engineering geological study of N2 laterite located in key aquifuge concerning coal mining with water protection in northwest China[J]. Journal of China Coal Society,2017,42(1):88−97.
    [21] 李全生,鞠金峰,曹志国,等. 采后10 a垮裂岩体自修复特征的钻孔探测研究:以神东矿区万利一矿为例[J]. 煤炭学报,2021,46(5):1428−1438.

    LI Quansheng,JU Jinfeng,CAO Zhiguo,et al. Detection of the self–healing characteristics of mining fractured rock mass after 10 years of underground coal mining:A case study of Wanli Coal Mine Shendong mining area[J]. Journal of China Coal Society,2021,46(5):1428−1438.
  • 加载中
图(10)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  15
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-11-03
  • 刊出日期:  2022-12-25
  • 网络出版日期:  2022-12-02

目录

    /

    返回文章
    返回