张超林,王奕博,王恩元,等. 煤与瓦斯突出煤粉在巷道内运移分布规律试验研究[J]. 煤田地质与勘探,2022,50(6):11−19. DOI: 10.12363/issn.1001-1986.22.01.0052
引用本文: 张超林,王奕博,王恩元,等. 煤与瓦斯突出煤粉在巷道内运移分布规律试验研究[J]. 煤田地质与勘探,2022,50(6):11−19. DOI: 10.12363/issn.1001-1986.22.01.0052
ZHANG Chaolin,WANG Yibo,WANG Enyuan,et al. Experimental study on the migration and distribution law of pulverized coal in roadway during coal and gas outburst[J]. Coal Geology & Exploration,2022,50(6):11−19. DOI: 10.12363/issn.1001-1986.22.01.0052
Citation: ZHANG Chaolin,WANG Yibo,WANG Enyuan,et al. Experimental study on the migration and distribution law of pulverized coal in roadway during coal and gas outburst[J]. Coal Geology & Exploration,2022,50(6):11−19. DOI: 10.12363/issn.1001-1986.22.01.0052

煤与瓦斯突出煤粉在巷道内运移分布规律试验研究

Experimental study on the migration and distribution law of pulverized coal in roadway during coal and gas outburst

  • 摘要: 煤与瓦斯突出是严重威胁煤矿安全生产的地质灾害之一,主要表现为瓦斯窒息和煤粉冲击、掩埋。利用自主研制的多功能煤与瓦斯突出模拟试验系统,开展不同瓦斯压力条件下煤与瓦斯突出模拟试验。结果表明,突出启动后,瓦斯气体携带煤粉以射流状喷向巷道。在0.35 MPa低瓦斯压力条件下,瓦斯膨胀能低,突出煤粉初始加速度小,受重力和阻力影响显著,运移形态以沙丘流和分层流为主,并出现多次“加速−减速”过程,最大速度为34.2 m/s;而在2.00 MPa高瓦斯压力条件下,瓦斯膨胀能高,突出煤粉初始加速度大,能有效克服重力和阻力,运移形态以栓流为主,运移速度降低不明显,最大为71.2 m/s。同时,当瓦斯压力从0.35 MPa增加至0.85 MPa和2.00 MPa时,相对突出强度由36.13%增大至52.39%和63.70%,且煤层瓦斯压力越高,突出煤粉运移距离越远,巷道末端集尘袋内煤粉质量占比越高,分别为65.21%、75.05%和87.17%。此外,突出结束后,突出煤粉粉碎率随瓦斯压力增加依次增大,分别为8.1%、21.5%和28.0%,但是粉碎到临界粒径0.075 mm以下的煤粉较少。最后,计算得到不同瓦斯压力条件下突出煤粉破碎指数分别为0.19、0.44和0.56,与相对突出强度具有较好的线性拟合关系。研究结果对揭示突出致灾机制、制定防灾减灾措施具有一定指导意义。

     

    Abstract: Coal and gas outburst is one of the geological disasters that seriously threaten coal mine safety production, and its main disaster forms are gas suffocation, impact and burial of pulverized coal. In this paper, the coal and gas outburst experiments under different gas pressures were carried out using the self-developed multi-functional test system for coal and gas outburst simulation. The results show that the gas entrains the pulverized coal and sprays into the roadway in a jet shape after the outburst is triggered. The gas expansion energy is under the pressure of 0.35 MPa and the initial acceleration of outburst pulverized coal is small. The migration process is significantly affected by gravity and resistance. Therefore, the migration forms are dune flow and stratified flow, and there are many “acceleration deceleration” processes, with the maximum speed of 34.2 m/s. The gas expansion energy is under the pressure of 2.00 MPa and the initial acceleration of outburst pulverized coal is large, which can effectively overcome gravity and resistance. The migration form is plug flow and the migration speed reduction is insignificant, with the maximum speed of 71.2 m/s. At the same time, when the gas pressure increases from 0.35 MPa to 0.85 MPa and 2.00 MPa, the relative intensity of outburst increases from 36.13% to 52.39% and 63.70%. The higher the gas pressure, the farther the migration distance of outburst pulverized coal, and the higher the proportion of pulverized coal in the dust collection bag at the end of the roadway, which are 65.21%, 75.05% and 87.17%. In addition, the crushing proportion of outburst pulverized coal increases with increasing gas pressure, which are 8.1%, 21.5% and 28.0%. However, there is less pulverized coal crushed with the critical particle size below 0.075 mm. Finally, the fragmentation index of outburst pulverized coal under different gas pressures are 0.19, 0.44 and 0.56, which has a good linear fitting relationship with the relative intensity of outburst. The research results have certain guiding significance for revealing the disaster causing mechanism of outburst and formulating disaster prevention and reduction measures.

     

/

返回文章
返回