留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国高阶煤煤层气疏导式高效开发理论基础

朱庆忠

朱庆忠. 我国高阶煤煤层气疏导式高效开发理论基础−以沁水盆地为例[J]. 煤田地质与勘探,2022,50(3):82−91. doi: 10.12363/issn.1001-1986.21.12.0845
引用本文: 朱庆忠. 我国高阶煤煤层气疏导式高效开发理论基础−以沁水盆地为例[J]. 煤田地质与勘探,2022,50(3):82−91. doi: 10.12363/issn.1001-1986.21.12.0845
ZHU Qingzhong. Theoretical basis of dredging and efficient development of high−rank coalbed methane in China: A case study of the Qinshui Basin[J]. Coal Geology & Exploration,2022,50(3):82−91. doi: 10.12363/issn.1001-1986.21.12.0845
Citation: ZHU Qingzhong. Theoretical basis of dredging and efficient development of high−rank coalbed methane in China: A case study of the Qinshui Basin[J]. Coal Geology & Exploration,2022,50(3):82−91. doi: 10.12363/issn.1001-1986.21.12.0845

我国高阶煤煤层气疏导式高效开发理论基础—以沁水盆地为例

doi: 10.12363/issn.1001-1986.21.12.0845
基金项目: 国家科技重大专项项目(2017ZX05064)
详细信息
    第一作者:

    朱庆忠,1966年生,男,河北景县人,博士,教授级高级工程师,从事煤层气、石油、天然气地质研究与管理工作. E-mail:cyy_zqz@petrochina.com.cn

  • 中图分类号: TE132;P618.11

Theoretical basis of dredging and efficient development of high−rank coalbed methane in China: A case study of the Qinshui Basin

  • 摘要: 我国高阶煤煤层气资源储量丰富,目前产量已占到我国煤层气总产量的90%以上,高阶煤煤层气资源的高效开发利用对于保障国家能源战略安全、助力实现“碳达峰、碳中和”战略目标具有重要的现实意义。我国煤层气产业总体呈现出勘探开发程度低、主体技术适应性低、投资回报率低、发展规模小的“三低一小”的不足,煤层气的规模化高效开发面临着巨大挑战。通过深度解剖勘探开发中出现的问题,认为制约煤层气产业高效开发的核心问题均源于对煤储层特征,特别是原始气水赋存、运移、产出规律认识不清,未形成与之相匹配的开发理论和配套工程技术。针对这一问题,开展煤层气水赋存–产出规律研究,将室内试验与现场实践相结合,形成煤层气疏导式高效开发理论及配套工程技术。结果表明:(1) 我国煤层气储层成藏过程复杂、气藏类型多样、非均质性强的客观条件与顶层设计支撑不足、主体技术工艺适应性不明确的主观因素是影响煤层气高效开发的重要原因;(2) 煤层孔隙–裂隙复杂双重孔隙结构及固有的气水赋存和产出运移规律决定了必须以“疏通”和“引导”为主导思想,以实现储层与井筒的充分沟通和流体的高效率产出;(3) 以沁水盆地高阶煤为例,运用疏导式开发理论形成的配套开发技术,实现高效规模建产,显著提升煤层气开发效果。

     

  • 图  基于分子动力学的高阶煤–甲烷–水接触角模拟结果

    Fig. 1  High-rank coal-methane-water contact angle and simulation results based on molecular dynamics

    图  沁水盆地寺河矿3号煤−甲烷–水接触角悬滴法测试结果

    Fig. 2  Test results of coal-methane-water contact angle suspension drop method of No.3 coal in Sihe Mine, Qinshui Basin

    图  寺河矿煤样饱和气水核磁共振T2图谱

    Fig. 3  Saturated gas-water NMR T2 atlas of coal samples in Sihe Mine

    图  饱和碳酸钠溶液后煤样SEM扫描图像

    Fig. 4  SEM images of coal samples saturated with sodium carbonate solution

    图  甲烷分子在煤基质上的赋存状态分子动力学模拟

    Fig. 5  Molecular dynamics simulation of methane molecule occurrence on coal matrix

    图  不同压力、不同孔径条件下游离气占比

    Fig. 6  Free gas fraction under different pressures and pore sizes

    图  煤层基质微孔隙模型

    Fig. 7  Coal seam matrix microporous model

    图  不同压差条件下气水界面移动过程模拟

    Fig. 8  Simulation of gas-water interface movement process under different pressures

    图  不同接触角条件下界面移动速度模拟结果

    Fig. 9  Simulation results of interface movement velocity at different contact angles

    图  10  临界压差与孔隙半径关系

    Fig. 10  Relationship between critical pressure difference and pore radius

    图  11  不同润湿性和流速条件下水驱气过程对比

    Fig. 11  Comparison of water-displacing-gas process at different wettability and flow rate

    图  12  不同润湿性条件下气驱水过程对比

    Fig. 12  Comparison of gas-drive-water process at different wettability

    图  13  煤储层中三级裂隙系统网络

    Fig. 13  Tertiary fracture system network in coal reservoir

    图  14  典型煤样中煤层气运移与驱动压力关系

    Fig. 14  Relationship between coalbed methane migration and driving pressure in typical coal samples

    图  15  马必东和郑庄区块疏导式排采技术应用效果

    Fig. 15  Application effect of diversion drainage technology in Mabidong and Zhengzhuang Blocks

  • [1] 朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55−60. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. On the scientific exploitation of high-rank CBM resources[J]. Natural Gas Industry,2020,40(1):55−60.. doi: 10.3787/j.issn.1000-0976.2020.01.007
    [2] 陈跃,马卓远,马东民,等. 不同宏观煤岩组分润湿性差异及对甲烷吸附解吸的影响[J]. 煤炭科学技术,2021,49(11):47−55. CHEN Yue,MA Zhuoyuan,MA Dongmin,et al. Effects of wettability differences of different macroscopic composition of coal on methane adsorption and desorption[J]. Coal Science and Technology,2021,49(11):47−55.
    [3] 李沛,马东民,张辉,等. 高、低阶煤润湿性对甲烷吸附/解吸的影响[J]. 煤田地质与勘探,2016,44(5):80−85. LI Pei,MA Dongmin,ZHANG Hui,et al. Influence of high and low rank coal wettability and methane adsorption/desorption characteristics[J]. Coal Geology & Exploration,2016,44(5):80−85.. doi: 10.3969/j.issn.1001-1986.2016.05.015
    [4] 村田逞诠. 煤的润湿性研究及其应用[M]. 朱春笙, 龚祯祥译. 北京: 煤炭工业出版社, 1992.
    [5] 孙晓晓,姚艳斌,陈基瑜,等. 基于低场核磁共振的煤润湿性分析[J]. 现代地质,2015,29(1):190−197. SUN Xiaoxiao,YAO Yanbin,CHEN Jiyu,et al. Determination of coal wettability by using low-field nuclear magnetic resonance[J]. Geoscience,2015,29(1):190−197.. doi: 10.3969/j.issn.1000-8527.2015.01.023
    [6] 董平,单忠健,李哲. 超细煤粉表面润湿性的研究[J]. 煤炭学报,2004,29(3):346−349. DONG Ping,SHAN Zhongjian,LI Zhe. Study on the surface wet characteristic of ultrafine coal powder[J]. Journal of China Coal Society,2004,29(3):346−349.. doi: 10.3321/j.issn:0253-9993.2004.03.020
    [7] 王诗萌. 润湿性岩石表面气体吸附行为的分子模拟研究[D]. 北京: 中国石油大学(北京), 2016.

    WANG Shimeng. Molecular dynamics investigation on the adsorption behaviors of gases on wetting rock surface[D]. Beijing: China University of Petroleum(Beijing), 2016.
    [8] 刘谦,郭玉森,赖永明,等. 煤的吸附特性与表面能关系的实验研究[J]. 煤矿安全,2015,46(9):20−22. LIU Qian,GUO Yusen,LAI Yongming,et al. Experimental research on relationship between adsorption characteristics and surface energy of coal[J]. Safety in Coal Mines,2015,46(9):20−22.
    [9] 谢松彬,姚艳斌,陈基瑜,等. 煤储层微小孔孔隙结构的低场核磁共振研究[J]. 煤炭学报,2015,40(增刊1):170−176. XIE Songbin,YAO Yanbin,CHEN Jiyu,et al. Research of micro-pore structure in coal reservoir using low-field NMR[J]. Journal of China Coal Society,2015,40(Sup.1):170−176.
    [10] YAO Yanbin,LIU Dameng,CHE Yao,et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel,2010,89(7):1371−1380.. doi: 10.1016/j.fuel.2009.11.005
    [11] ZHENG Sijian,YAO Yanbin,ELSWORTH D,et al. A novel pore size classification method of coals:Investigation based on NMR relaxation[J]. Journal of Natural Gas Science and Engineering,2020,81:103466.. doi: 10.1016/j.jngse.2020.103466
    [12] 李树刚,白杨,林海飞,等. CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报,2018,43(9):2476−2483. LI Shugang,BAI Yang,LIN Haifei,et al. Molecular simulation of adsorption thermodynamics of multicomponent gas in coal[J]. Journal of China Coal Society,2018,43(9):2476−2483.
    [13] LONG Hang,LIN Haifei,YAN Min,et al. Molecular simulation of the competitive adsorption characteristics of CH4,CO2,N2,and multicomponent gases in coal[J]. Powder Technology,2021,385:348−356.. doi: 10.1016/j.powtec.2021.03.007
    [14] 刘冰,张松航,唐书恒,等. 无越流补给含水层对煤层气排采影响的数值模拟[J]. 煤田地质与勘探,2021,49(2):43−53. LIU Bing,ZHANG Songhang,TANG Shuheng,et al. Numerical simulation of the influence of no-flow recharge aquifer on CBM drainage[J]. Coal Geology & Exploration,2021,49(2):43−53.. doi: 10.3969/j.issn.1001-1986.2021.02.006
    [15] 孟艳军,汤达祯,许浩,等. 煤层气解吸阶段划分方法及其意义[J]. 石油勘探与开发,2014,41(5):612−617. MENG Yanjun,TANG Dazhen,XU Hao,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development,2014,41(5):612−617.. doi: 10.11698/PED.2014.05.14
    [16] 胡友林,乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报,2014,39(6):1107−1111. HU Youlin,WU Xiaoming. Research on coalbed methane reservoir water blocking damage mechanism and anti-water blocking[J]. Journal of China Coal Society,2014,39(6):1107−1111.
    [17] SHANG Xiaopeng,ZHANG Xuan,NGUYEN T,et al. Direct numerical simulation of evaporating droplets based on a sharp-interface algebraic VOF approach[J]. International Journal of Heat and Mass Transfer,2022,184:122282.. doi: 10.1016/j.ijheatmasstransfer.2021.122282
    [18] 宋帅,周劲辉,范德元,等. 高阶煤压裂液伤害机理研究[J]. 煤炭技术,2018,37(5):161−163. SONG Shuai,ZHOU Jinhui,FAN Deyuan,et al. Study on damage mechanism of fracturing fluid in high rank coal[J]. Coal Technology,2018,37(5):161−163.
    [19] 白建平,武杰. 压裂液对煤储层伤害实验及应用:以沁水盆地西山区块为例[J]. 煤田地质与勘探,2016,44(4):77−80. BAI Jianping,WU Jie. Experiment and application of fracturing fluid damage to coal reservoir:A case of Xishan block in Qinshui Basin[J]. Coal Geology & Exploration,2016,44(4):77−80.. doi: 10.3969/j.issn.1001-1986.2016.04.015
    [20] MENG Ya,LI Zhiping,LAI Fengpeng. Influence of effective stress on gas slippage effect of different rank coals[J]. Fuel,2021,285:119207.. doi: 10.1016/j.fuel.2020.119207
    [21] YANG Yun,LIU Shimin. Estimation and modeling of pressure-dependent gas diffusion coefficient for coal:A fractal theory-based approach[J]. Fuel,2019,253:588−606.. doi: 10.1016/j.fuel.2019.05.009
  • 加载中
图(15)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  20
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 修回日期:  2022-02-28
  • 发布日期:  2022-03-25
  • 网络出版日期:  2022-03-23

目录

    /

    返回文章
    返回