留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大宁–吉县区块深层煤层气成藏特征及有利区评价

李曙光 王成旺 王红娜 王玉斌 徐凤银 郭智栋 刘新伟

李曙光,王成旺,王红娜,等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59−67. doi: 10.12363/issn.1001-1986.21.12.0842
引用本文: 李曙光,王成旺,王红娜,等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59−67. doi: 10.12363/issn.1001-1986.21.12.0842
LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59−67. doi: 10.12363/issn.1001-1986.21.12.0842
Citation: LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59−67. doi: 10.12363/issn.1001-1986.21.12.0842

大宁–吉县区块深层煤层气成藏特征及有利区评价

doi: 10.12363/issn.1001-1986.21.12.0842
基金项目: 国家科技重大专项项目(2016ZX05042);中国石油天然气股份有限公司前瞻性基础性技术攻关项目(2021DJ2304)
详细信息
    第一作者:

    李曙光,1967年生,男,浙江余姚人,博士,教授级高级工程师,从事煤层气、致密气、页岩气地质工程一体化评价、储层改造工艺研究、压裂液体系配方研发等. E-mail:57990696@qq.com

    通信作者:

    王成旺,1984年生,男,陕西神木人,硕士,高级工程师,从事煤层气、致密气地质工程一体化评价等.E-mail:361883384@qq.com

  • 中图分类号: TD712;P618.13

Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block

  • 摘要: 鄂尔多斯盆地东缘大宁–吉县区块下二叠统太原组埋深大于2 000 m的8号煤是国内首个千亿方级别的深层煤层气田,但是深层煤层气成藏特征尚不明确。综合应用地质、测试、生产资料,开展深层煤层气成藏特征及有利区评价2方面研究。结果表明:研究区深层煤储层全区发育、厚度大、热演化程度高、两期成藏及古热流体侵入,使其具备大量生烃的条件;深层煤储层裂隙、微孔广泛发育,储层具备吸附气和游离气共同赋存的条件;顶底板以灰岩及泥岩为主,封盖能力强,具备游离气保存条件;深层煤层气具有“广覆式生烃、高含气、高饱和、高压束缚游离气与吸附气共存”的赋存特征。建立了深层煤层气“地质–工程”双甜点识别指标体系12项,划分了3类工程–地质甜点区,其中,地质–工程Ⅰ类甜点区位于研究区的西北部,地质–工程Ⅱ类甜点区位于研究的中部,地质Ⅱ类–工程Ⅰ类甜点区位于研究东北部和南部;在地质–工程Ⅰ类甜点区内实施的JS-01井自喷生产,最高日产气9.4~9.7万m3,展现了良好的上产潜力。研究成果有效指导了深层煤层气先导试验区的优选及国内首个千亿方级别的深层煤层气田探明。

     

  • 图  研究区位置及地层综合柱状图

    Fig. 1  Location and stratigraphic column of the study area

    图  Inline 237地震剖面

    Fig. 2  Inline 237 seismic profile

    图  研究区8号煤埋藏史及吸附史

    Fig. 3  Burial history and adsorption history of No. 8 coal in the study area

    图  煤层孔裂隙发育扫描电镜图

    Fig. 4  SEM images showing pore and fracture development in coal

    图  Dj20压汞孔隙分布频率

    Fig. 5  Distribution frequency of mercury injection pores in well Dj20

    图  煤层及顶底板组合类型

    Fig. 6  Combination type of coal seam and roof and floor

    图  DJ-9排采曲线

    Fig. 7  DJ-9 drainage production curves

    图  DJ-P20井8号煤碳同位素变化曲线

    Fig. 8  Carbon isotope variation curve of No.8 coal in well DJ-P20

    图  DJ22-1V井等温吸附曲线

    Fig. 9  Isothermal adsorption curves from well DJ22-1V

    图  10  大宁−吉县区块“地质–工程”甜点区分布

    Fig. 10  Distribution of geological-engineering sweep spots in Daning-Jixian Block

    图  11  JS-01排采曲线

    Fig. 11  JS-01 drainage production curves

    表  1  吉县中浅层与深层煤储层特征对比

    Table  1  Comparison of middle-shallow and deep coal reservoirs in Jixian

    参数中浅层(埋深小于1 500 m)深层(埋深大于2 000 m)
    地层组C–PC–P
    开采深度/m300~1 2002 000~2 600
    煤层厚度/m3~55~12
    煤体结构构造煤为主原生结构煤为主
    镜质体反射率/%1.2~2.02.3~2.8
    含气量/(m3·t−1)8~1520~35
    渗透率/(10−3 μm2)0.01~0.80.01~0.05
    孔隙率/%5~153~8
    有机质体积分数/%80.789.7
    无机矿物成分黏土矿物为主碳酸盐岩类、氧化硅类为主
    压裂后单井日产气量/104 m30.030.5~10
    下载: 导出CSV

    表  2  研究区地层水矿化度

    Table  2  Salinity of formation water in the study area

    井号离子质量浓度/(mg·L−1)总矿化度/
    (mg·L−1)
    水型
    Ca2+Mg2+Na+K+HCO 3SO4 2−Cl
    DJ16885526634096791130039207829321262CaCl2
    DJ2279901454238751 95330043100876156190CaCl2
    DJ3135830913764261100332443440158CaCl2
    DJ49971150584491244900366181883023CaCl2
    DJ5252467902219311891005493387142859CaCl2
    DJ61618214581903414659503669326107501CaCl2
    下载: 导出CSV

    表  3  大宁−吉县区块深层与浅层煤含气量、含气饱和度对比

    Table  3  Comparison of deep and shallow coal gas content and gas saturation in Daning-Jixian Block

    浅层深层
    井号含气量/(m3·t−1)含气饱和度/%深度/m井号含气量/(m3·t−1)含气饱和度/%深度/m
    J19.1451.781 144.8DJ121.3187.902 118
    J29.4258.481 139.3DJ 223.4599.982 276
    J311.7049.411 145.0DJ 328.50100.002 173
    J414.2178.801 176.0DJ 429.59100.002 143
    J514.7682.501 055.0DJ 526.2498.472 166
    下载: 导出CSV

    表  4  大宁−吉县区块煤岩柱样核磁共振测试结果

    Table  4  Nuclear magnetic resonance test results of coal and rock cores

    样品编号深度/m样品类型总孔隙率/%水占孔隙率/%含水饱和度/%含气饱和度/%
    232278.15~2278.40柱样5.733.9068.1431.86
    252278.66~2278.95柱样5.502.2040.0259.98
    272279.04~2279.29柱样5.723.9268.5031.50
    292279.44~2279.68柱样4.143.7861.2638.74
    下载: 导出CSV

    表  5  深层煤层气“地质−工程”甜点区划分指标

    Table  5  Classification index of deep CBM “geological-engineering” sweet spots

    地质甜点区工程甜点区
    指标Ⅰ类Ⅱ类指标Ⅰ类Ⅱ类
    构造构造平缓带,
    地层倾角小于3°
    构造陡坡带,
    地层倾角3°~8°
    顶板岩性泥岩+薄灰岩厚灰岩
    煤层厚度/m>6>6底板岩性脆性指数小于30的
    泥岩、灰岩
    脆性指数大于30的泥岩、
    砂质泥岩、砂岩
    埋深/m>20001500~2000顶板隔层应力差/MPa>6<6
    含气量/(m3·t−1)>16<16底板隔层应力差/MPa>6<6
    气测峰值/%>80<80可压性(煤体强度、
    裂隙发育程度)
    割理裂隙发育割理裂隙发育差
    录井显示槽面有气泡
    液面
    上涨2 cm以上
    槽面有气泡
    液面
    上涨小于2 cm
    可改造性(煤储层
    矿物质种类及含量)
    填充物溶蚀率高不含填充物或填充物溶蚀率低
    下载: 导出CSV
  • [1] 徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.. doi: 10.13199/j.cnki.cst.2019.10.027

    XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.. doi: 10.13199/j.cnki.cst.2019.10.027
    [2] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579

    SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579
    [3] HOU Xiaowei,LIU Shimin,ZHU Yanming,et al. Evaluation of gas contents for a multi–seam deep coalbed methane reservoir and their geological controls:In situ direct method versus indirect method[J]. Fuel,2020,265:116917.. doi: 10.1016/j.fuel.2019.116917
    [4] 门相勇,韩征,宫厚健,等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业,2018,38(9):10−16.. doi: 10.3787/j.issn.1000-0976.2018.09.002

    MEN Xiangyong,HAN Zheng,GONG Houjian,et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry,2018,38(9):10−16.. doi: 10.3787/j.issn.1000-0976.2018.09.002
    [5] 陈刚,秦勇,李五忠,等. 鄂尔多斯盆地东部深层煤层气成藏地质条件分析[J]. 高校地质学报,2012,18(3):465−473.. doi: 10.16108/j.issn1006-7493.2012.03.019

    CHEN Gang,QIN Yong,LI Wuzhong,et al. Analysis of geological conditions of deep coalbed methane reservoiring in the eastern Ordos Basin[J]. Geological Journal of China Universities,2012,18(3):465−473.. doi: 10.16108/j.issn1006-7493.2012.03.019
    [6] LI Song,TANG Dazhen,PAN Zhejun,et al. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin,China:Implications for coalbed methane development[J]. Journal of Natural Gas Science and Engineering,2018,53:394−402.. doi: 10.1016/j.jngse.2018.03.016
    [7] 孙钦平,王生维. 大宁–吉县煤区含煤岩系沉积环境分析及其对煤层气开发的意义[J]. 天然气地球科学,2006,17(6):874−879.. doi: 10.3969/j.issn.1672-1926.2006.06.030

    SUN Qinping,WANG Shengwei. The deposit environment analysis of the coal–bearing strata and its significance to the coalbed methane development in Daning–Jixian region[J]. Natural Gas Geoscience,2006,17(6):874−879.. doi: 10.3969/j.issn.1672-1926.2006.06.030
    [8] 陈瑞银,罗晓容,陈占坤,等. 鄂尔多斯盆地埋藏演化史恢复[J]. 石油学报,2006,27(2):43−47.. doi: 10.3321/j.issn:0253-2697.2006.02.009

    CHEN Ruiyin,LUO Xiaorong,CHEN Zhankun,et al. Restoration of burial history of four periods in Ordos Basin[J]. Acta Petrolei Sinica,2006,27(2):43−47.. doi: 10.3321/j.issn:0253-2697.2006.02.009
    [9] 于强,任战利,曹红霞. 鄂尔多斯盆地延长探区下古生界热演化史[J]. 兰州大学学报(自然科学版),2011,47(5):24−29.. doi: 10.13885/j.issn.0455-2059.2011.05.019

    YU Qiang,REN Zhanli,CAO Hongxia. Thermal evolution history of the Lower Paleozoic in Yanchang exploratory area of Ordos Basin[J]. Journal of Lanzhou University(Natural Sciences),2011,47(5):24−29.. doi: 10.13885/j.issn.0455-2059.2011.05.019
    [10] 丁超. 鄂尔多斯盆地东北部热演化史与天然气成藏期次研究[D]. 西安: 西北大学, 2010.

    DING Chao. Thermal evolution and petroleum–charging times in the northeast area of Ordos Basin[D]. Xi’an: Northwest University, 2010.
    [11] 马行陟,宋岩,柳少波,等. 中高煤阶煤储层吸附能力演化历史定量恢复:以鄂尔多斯盆地韩城地区为例[J]. 石油学报,2014,35(6):1080−1086.. doi: 10.7623/syxb201406005

    MA Xingzhi,SONG Yan,LIU Shaobo,et al. Quantitative research on adsorption capacity evolution of middle–high rank coal reservoirs in geological history:A case study from Hancheng area in Ordos Basin[J]. Acta Petrolei Sinica,2014,35(6):1080−1086.. doi: 10.7623/syxb201406005
    [12] 任战利,祁凯,刘润川,等. 鄂尔多斯盆地早白垩世构造热事件形成动力学背景及其对油气等多种矿产成藏(矿)期的控制作用[J]. 岩石学报,2020,36(4):1213−1234.. doi: 10.18654/2095-8927/015

    REN Zhanli,QI Kai,LIU Runchuan,et al. Dynamic background of Early Cretaceous tectonic thermal events and its control on various mineral accumulations such as oil and gas in the Ordos Basin[J]. Acta Petrologica Sinica,2020,36(4):1213−1234.. doi: 10.18654/2095-8927/015
    [13] 夏大平,王振,马俊强. 煤层气与页岩气吸附差异性分析[J]. 煤田地质与勘探,2015,43(6):36−38.. doi: 10.3969/j.issn.1001-1986.2015.06.007

    XIA Daping,WANG Zhen,MA Junqiang. Analyses on the adsorption difference between coalbed methane and shale gas[J]. Coal Geology & Exploration,2015,43(6):36−38.. doi: 10.3969/j.issn.1001-1986.2015.06.007
    [14] 张庆玲. 页岩容量法等温吸附实验中异常现象分析[J]. 煤田地质与勘探,2015,43(5):31−33.. doi: 10.3969/j.issn.1001-1986.2015.05.008

    ZHANG Qingling. The analysis of abnormal phenomena in shale isothermal absorption volumetry test[J]. Coal Geology & Exploration,2015,43(5):31−33.. doi: 10.3969/j.issn.1001-1986.2015.05.008
    [15] 韩思杰,桑树勋,梁晶晶. 沁水盆地南部中高阶煤高压甲烷吸附行为[J]. 煤田地质与勘探,2018,46(5):10−18.. doi: 10.3969/j.issn.1001-1986.2018.05.002

    HAN Sijie,SANG Shuxun,LIANG Jingjing. High pressure methane adsorption of medium and high–rank coal in southern Qinshui Basin[J]. Coal Geology & Exploration,2018,46(5):10−18.. doi: 10.3969/j.issn.1001-1986.2018.05.002
    [16] 孙少华,李小明,龚革联,等. 鄂尔多斯盆地构造热事件研究[J]. 科学通报,1997,42(3):306−309.. doi: 10.1360/csb1997-42-3-306

    SUN Shaohua,LI Xiaoming,GONG Gelian,et al. Study on tectonic thermal events in Ordos Basin[J]. Chinese Science Bulletin,1997,42(3):306−309.. doi: 10.1360/csb1997-42-3-306
    [17] 宋岩,柳少波,马行陟,等. 中高煤阶煤层气富集高产区形成模式与地质评价方法[J]. 地学前缘,2016,23(3):1−9.. doi: 10.13745/j.esf.2016.03.001

    SONG Yan,LIU Shaobo,MA Xingzhi,et al. Research on formation model and geological evaluation method of the middle to high coal rank coalbed methane enrichment and high production area[J]. Earth Science Frontiers,2016,23(3):1−9.. doi: 10.13745/j.esf.2016.03.001
    [18] 王玫珠,王勃,孙粉锦,等. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学,2017,28(7):1108−1114.

    WANG Meizhu,WANG Bo,SUN Fenjin,et al. Quantitative evaluation of CBM enrichment and high yield of Qinshui Basin[J]. Natural Gas Geoscience,2017,28(7):1108−1114.
    [19] 王勃,姚红星,王红娜,等. 沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J]. 石油与天然气地质,2018,39(2):366−372.. doi: 10.11743/ogg20180215

    WANG Bo,YAO Hongxing,WANG Hongna,et al. Favorable and major geological controlling factors for coalbed methane accumulation and high production in the Chengzhuang block,Qinshui Baisn[J]. Oil & Gas Geology,2018,39(2):366−372.. doi: 10.11743/ogg20180215
    [20] 孙粉锦,王勃,李梦溪,等. 沁水盆地南部煤层气富集高产主控地质因素[J]. 石油学报,2014,35(6):1070−1079.. doi: 10.7623/syxb201406004

    SUN Fenjin,WANG Bo,LI Mengxi,et al. Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J]. Acta Petrolei Sinica,2014,35(6):1070−1079.. doi: 10.7623/syxb201406004
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  25
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-04-16
  • 刊出日期:  2022-09-25
  • 网络出版日期:  2022-06-28

目录

    /

    返回文章
    返回