留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

祁南矿东风井冻结温度场时空演化规律分析

黄诗清 荣传新 龙伟 马昊辰 何骏珍

黄诗清,荣传新,龙伟,等. 祁南矿东风井冻结温度场时空演化规律分析[J]. 煤田地质与勘探,2022,50(8):125−133. doi: 10.12363/issn.1001-1986.21.12.0743
引用本文: 黄诗清,荣传新,龙伟,等. 祁南矿东风井冻结温度场时空演化规律分析[J]. 煤田地质与勘探,2022,50(8):125−133. doi: 10.12363/issn.1001-1986.21.12.0743
HUANG Shiqing,RONG Chuanxin,LONG Wei,et al. Analysis on spatio-temporal evolution law of freezing temperature field in eastern shaft of Qinan Coal Mine[J]. Coal Geology & Exploration,2022,50(8):125−133. doi: 10.12363/issn.1001-1986.21.12.0743
Citation: HUANG Shiqing,RONG Chuanxin,LONG Wei,et al. Analysis on spatio-temporal evolution law of freezing temperature field in eastern shaft of Qinan Coal Mine[J]. Coal Geology & Exploration,2022,50(8):125−133. doi: 10.12363/issn.1001-1986.21.12.0743

祁南矿东风井冻结温度场时空演化规律分析

doi: 10.12363/issn.1001-1986.21.12.0743
基金项目: 国家自然科学基金项目(51374010,51878005);安徽理工大学矿山地下工程教育部工程研究中心2020年基金项目(JYBGCZX2020209)
详细信息
    第一作者:

    黄诗清,1998年生,男,安徽芜湖人,硕士研究生,从事有关岩土工程方向的研究. E-mail:714132927@qq.com

    通信作者:

    荣传新,1968年生,男,安徽六安人,博士,教授,博士生导师,从事岩土工程和结构工程方面的教学和研究.E-mail:chxrong@aust.edu.cn

  • 中图分类号: TD265

Analysis on spatio-temporal evolution law of freezing temperature field in eastern shaft of Qinan Coal Mine

Funds: National Natural Science Foundation of China(51374010,51474004);Engineering Research Center of the Ministry of Education of Anhui University of Science and Technology in 2020(JYBGCZX2020209)
  • 摘要: 以安徽祁南矿东风井冻结法凿井为工程背景,以多圈管冻结的不同土性表土层为研究对象,基于冻结孔实际成孔位置,应用有限元软件COMSOL Multiphysics分别建立埋深218 m钙质黏土层位、埋深225 m细砂层位和埋深259 m砂质黏土层位3个不同土性、不同埋深的冻结温度场数值计算模型,并结合现场实测数据,分层计算分析了其冻结壁温度场时空演化规律,结果表明:在相同冻结条件下,埋深225 m细砂层位冻结壁有效平均温度比埋深259 m砂质黏土层位和埋深218 m钙质黏土层位分别低0.09~0.72℃和0.44~1.95℃,埋深225 m细砂层位平均有效厚度比埋深259 m砂质黏土层位和埋深218 m钙质黏土层位分别厚0.17~0.38 m和0.29~0.47 m;现场实测与数值计算均表明,各个层位冻结壁开挖时,其平均温度均低于–15℃,有效厚度均大于6.2 m,200 m以下深部表土层井帮温度低于–4℃,满足施工要求,冻结壁强度和稳定性均处于安全状态;冻结孔沿径向将冻结温度场划分为3个区域(A区、B区、C区),B区在冻结孔冷量叠加的影响下降温速度最快,A区降温速度适中,C区距离冻结管较远,且外部土体源源不断向其输入热源,降温速度最慢。该研究可为冻结法凿井中冻结壁的施工提供一定的理论参考。

     

  • 图  冻结孔布置与主面路径

    Fig. 1  Freezing holes layout and main surface paths

    图  冻结孔剖面图

    Fig. 2  Section diagram of the frozen hole

    图  盐水温度趋势

    Fig. 3  Brine temperature trend

    图  温度场数值模型网格划分

    Fig. 4  Meshing of temperature field numerical model

    图  4个测温孔实测数据变化三维图

    Fig. 5  Three dimentional diagram of measured data of four temperature measuring holes

    图  埋深259 m砂质黏土层位实测结果与数值计算结果对比曲线

    Fig. 6  Comparison curves between measured results and numerical calculation results of sandy clay with buried depth of 259 m

    图  冻结壁有效厚度及平均温度与时间关系

    Fig. 7  Relationship between effective frozen wall thickness and average temperature and time

    图  埋深 218 m钙质黏土层位2个主面的温度随时空变化关系曲线

    Fig. 8  Temperature variation curves of two main surfaces of calcareous clay with buried depth of 218 m

    图  10  埋深259 m砂质黏土层位2个主面的温度随时空变化关系曲线

    Fig. 10  Temperature variation curves of two main surfaces of sandy clay with buried depth of 259 m

    图  埋深 225 m细砂层位2个主面的温度随时空变化关系曲线

    Fig. 9  Temperature variation curves of two main surfaces of the fine sand layer with buried depth of 225 m

    表  1  冻结管主要技术参数

    Table  1  Main technical parameters of frozen pipe

    冻结孔类型深度/m布置直径/m孔数/个开孔间距/m
    主排孔385(单号),405(双号)18.022,221.285
    辅助孔37812.6192.083
    防片帮孔27510.8191.786
    下载: 导出CSV

    表  2  土体热物理参数

    Table  2  Soil thermal physical parameters

    土层埋深/m密度/(kg·m−3)未冻土比热容/
    (J·kg−1·K−1)
    冻土比热容/
    (J·kg−1·K−1)
    未冻土导热系数/
    (W·m−1·K−1)
    冻土导热系数/
    (W·m−1·K−1)
    钙质黏土2181 9321 4251 3821.2811.524
    细砂2251 9151 0259061.3541.794
    砂质黏土2592 0031 3241 2871.2841.613
    下载: 导出CSV

    表  3  3个层位的井帮温度计算结果与实测结果对比

    Table  3  Temperature comparison between measured results and numerical calulation results of hole side wall in three layers

    冻结天数/d掘砌荒径/mm掘砌深度/m岩性井帮不同方位温度/℃
    东南东北西西南西北平均温度
    1168 556218钙质黏土实测−5.8−6.5−6.2−6.3−6.3−7.8−6.5−6.6−6.50
    模拟−6.2−6.4−7.0−6.8−6.3−6.6−6.3−6.5−6.51
    1208 556225细砂实测−9.0−8.6−9.6−9.1−9.5−10.5−9.8−10.0−9.51
    模拟−8.6−9.1−8.8−8.9−8.7−8.9−8.8−8.7−8.81
    1308 556259砂质黏土实测−8.2−7.8−8.3−8.4−8.8−9.2−8.5−8.6−8.48
    模拟−8.3−8.5−8.0−8.1−8.0−8.0−7.9−8.0−8.10
    下载: 导出CSV
  • [1] 龙伟, 荣传新, 段寅, 等. 拱北隧道管幕冻结法温度场数值计算[J]. 煤田地质与勘探, 2020, 48(3): 160–168.. doi: 10.3969/j.issn.1001-1986.2020.03.023

    LONG Wei, RONG Chuanxin, DUAN Yin, et al. Numerical calculation of temperature field of freeze–sealing pipe roof method in Gongbei tunnel[J]. Coal Geology & Exploration, 2020, 48(3): 160–168.. doi: 10.3969/j.issn.1001-1986.2020.03.023
    [2] 许惠德. 刘东煤矿混合井冻结法施工的工程地质论证[J]. 煤田地质与勘探, 1995, 23(6): 43–46.

    XU Huide. Approachment to the engineering geology about the freezing process of a skip–combination shaft in Liudong coal mine[J]. Coal Geology & Exploration, 1995, 23(6): 43–46.
    [3] 高娟, 冯梅梅, 杨维好. 渗流作用下裂隙岩体冻结温度场分布规律研究[J]. 采矿与安全工程学报, 2013, 30(1): 68–73.

    GAO Juan, FENG Meimei, YANG Weihao. Research on distribution law of frozen temperature field of fractured rock mass with groundwater seepage[J]. Journal of Mining & Safety Engineering, 2013, 30(1): 68–73.
    [4] 潘旭东, 白云龙, 白云飞, 等. 富水地层冻结法施工渗流场对温度场的影响规律研究[J]. 现代隧道技术, 2021, 58(5): 122–128.

    PAN Xudong, BAI Yunlong, BAI Yunfei, et al. Study on the influence pattern of seepage field on temperature field in the construction of the metro cross passage by freezing method in water–rich strata[J]. Modern Tunnelling Technology, 2021, 58(5): 122–128.
    [5] 鲁先龙, 陈湘生, 陈曦. 人工地层冻结法风险预控[J]. 岩土工程学报, 2021, 43(12): 2308–2314.

    LU Xianlong, CHEN Xiangsheng, CHEN Xi. Risk prevention and control of artificial ground freezing(AGF)[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2308–2314.
    [6] 李怀鑫, 林斌, 王鹏. 双圈管冻结壁温度场形成特性及影响因素[J]. 煤田地质与勘探, 2020, 48(3): 169–175.. doi: 10.3969/j.issn.1001-1986.2020.03.024

    LI Huaixin, LIN Bin, WANG Peng. Influence factors and formation properties of temperature field in the frozen wall of double ring pipes[J]. Coal Geology & Exploration, 2020, 48(3): 169–175.. doi: 10.3969/j.issn.1001-1986.2020.03.024
    [7] 王鹏, 林斌, 侯海杰, 等. 冻结管布置形式对冻结壁温度场发展规律影响研究[J]. 煤炭科学技术, 2019, 47(12): 38–44.. doi: 10.13199/j.cnki.cst.2019.12.006

    WANG Peng, LIN Bin, HOU Haijie, et al. Study on influence of freezing tubes layout on development law of temperature field of freezing wall[J]. Coal Science and Technology, 2019, 47(12): 38–44.. doi: 10.13199/j.cnki.cst.2019.12.006
    [8] 王鹏, 林斌, 侯海杰, 等. 基于FLAC3D冻结壁温度场数值分析[J]. 煤炭技术, 2018, 37(11): 32–34.

    WANG Peng, LIN Bin, HOU Haijie, et al. Numerical analysis of freezing wall temperature field based on FLAC3D[J]. Coal Technology, 2018, 37(11): 32–34.
    [9] 王鹏, 林斌, 侯海杰, 等. 某矿副井冻结壁温度场发展规律研究[J]. 煤矿安全, 2018, 49(8): 214–217.

    WANG Peng, LIN Bin, HOU Haijie, et al. Research on development law of freezing wall temperature field in a mine auxiliary shaft[J]. Safety in Coal Mines, 2018, 49(8): 214–217.
    [10] 奚家米, 李庆平, 孙永岗, 等. 宁正煤田白垩系岩层冻结温度场实测与数值分析[J]. 采矿与安全工程学报, 2014, 31(5): 764–768.. doi: 10.13545/j.issn1673-3363.2014.05.016

    XI Jiami, LI Qingping, SUN Yonggang, et al. Measurement and numerical analysis of freezing temperature field in Ningzheng coal field Cretaceous rock stratum[J]. Journal of Mining & Safety Engineering, 2014, 31(5): 764–768.. doi: 10.13545/j.issn1673-3363.2014.05.016
    [11] 李栋伟, 汪仁和, 胡璞. 多圈管冻结瞬态温度场有限元数值分析[J]. 煤田地质与勘探, 2007, 35(2): 38–40.. doi: 10.3969/j.issn.1001-1986.2007.02.012

    LI Dongwei, WANG Renhe, HU Pu. FEM analysis of transient freezing temperature field of frozen multi–wall tube[J]. Coal Geology & Exploration, 2007, 35(2): 38–40.. doi: 10.3969/j.issn.1001-1986.2007.02.012
    [12] 刘波, 李岩, 戴华东, 等. 斜井冻结壁温度场分布规律研究[J]. 煤炭科学技术, 2012, 40(12): 4–7.

    LIU Bo, LI Yan, DAI Huadong, et al. Study on temperature field distribution law of freezing wall for inclined shaft[J]. Coal Science and Technology, 2012, 40(12): 4–7.
    [13] 张涛, 杨维好, 黄家会, 等. 管内盐水流动状态对单管冻结温度场影响规律分析[J]. 煤炭学报, 2015, 40(9): 2057–2064.

    ZHANG Tao, YANG Weihao, HUANG Jiahui, et al. Influence law of brine flow state in pipe on single pipe freezing temperature field[J]. Journal of China Coal Society, 2015, 40(9): 2057–2064.
    [14] 盛天宝, 魏世义. 特厚黏土层多圈孔冻结壁温度场实测研究与工程应用[J]. 岩土工程学报, 2012, 34(8): 1516–1521.

    SHENG Tianbao, WEI Shiyi. Measurement and engineering application of temperature field multiple–ring hole frozen wall in extra–thick clay strata[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1516–1521.
    [15] 陈军浩, 夏红兵, 李栋伟. 多圈管冻结壁温度场发展及冻结管偏斜影响[J]. 中山大学学报(自然科学版), 2016, 55(4): 56–62.

    CHEN Junhao, XIA Hongbing, LI Dongwei. Multi–circle–tubefrozenwall temperature field development and deviation pipes influence[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(4): 56–62.
    [16] 任建喜, 孙杰龙, 张琨, 等. 富水砂层斜井冻结壁力学特性及温度场研究[J]. 岩土力学, 2017, 38(5): 1405–1412.

    REN Jianxi, SUN Jielong, ZHANG Kun, et al. Mechanical properties and temperature field of inclined frozen wall in water–rich sand stratum[J]. Rock and Soil Mechanics, 2017, 38(5): 1405–1412.
    [17] 周盛全, 陈海明. 白垩系地层深井冻结壁温度场分布规律[J]. 冰川冻土, 2013, 35(5): 1232–1236.

    ZHOU Shengquan, CHEN Haiming. Wall temperature field of a deep frozen shaft in Cretaceous strata[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1232–1236.
    [18] WANG Zhi,RONG Chuanxin,DU Meng,et al. The development law of the freezing temperature field of a calcareous clay layer[J]. Mathematical Problems in Engineering,2020(11):1−12.
    [19] WANG Bin,RONG Chuanxin,CHENG Hua,et al. Research and application of the local differential freezing technology in deep alluvium[J]. Advances in Civil Engineering,2020(9):1−15.
    [20] HU Xiangdong,WU Yuanhao,LI Xinyi. A field study on the freezing characteristics of freeze−sealing pipe roof used in ultra−shallow buried tunnel[J]. Applied Sciences,2019,9(8):1532.. doi: 10.3390/app9081532
    [21] YAO Zhishu,CAI Haibing,XUE Weipei,et al. Numerical simulation and measurement analysis of the temperature field of artificial freezing shaft sinking in Cretaceous strata[J]. AIP Advances,2019,9(2):025209.. doi: 10.1063/1.5085806
    [22] 陈红蕾, 高伟, 李宁, 等. 深冻结井筒温度场成孔弱界面分析[J]. 冰川冻土, 2015, 37(2): 434–439.

    CHEN Honglei, GAO Wei, LI Ning, et al. Analysis of weak interface between the actual holes in deep frozen shaft temperature field[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 434–439.
    [23] 汪仁和, 王伟. 冻结孔偏斜下冻结壁温度场的形成特征与分析[J]. 岩土工程学报, 2003, 25(6): 658–661.. doi: 10.3321/j.issn:1000-4548.2003.06.002

    WANG Renhe, WANG Wei. Analysis for features of the freezing temperature field under deflective pipes[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 658–661.. doi: 10.3321/j.issn:1000-4548.2003.06.002
    [24] 焦华喆, 孙冠东, 陈新明, 等. 深厚冲积层多圈孔冻结壁温度场发展研究[J]. 煤炭学报, 2018, 43(增刊2): 443–449.

    JIAO Huazhe, SUN Guandong, CHEN Xinming, et al. Development of temperature field of multi circle freezing wall in deep alluvium[J]. Journal of China Coal Society, 2018, 43(Sup. 2): 443–449.
    [25] 汪仁和. 人工多圈管冻结地层的水热力耦合研究及其冻结壁计算[D]. 合肥: 中国科学技术大学, 2005.

    WANG Renhe. Hydro–thermal coupling study of artificial multiturn tube frozen formation and calculation of frozen wall[D]. Hefei: University of Science and Technology of China, 2005.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  31
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-03-16
  • 刊出日期:  2022-08-25
  • 网络出版日期:  2022-08-06

目录

    /

    返回文章
    返回