Characteristics of coal reservoirs and favorable areas classification and optimization of CBM planning blocks in Guizhou Province
-
摘要: 煤层气有利区块的科学评价,是煤层气勘探开发部署和效益最大化。基于贵州省新划定的18个矿权空白的煤层气规划区块,综合区块现有地质与工程数据,系统研究了18个区块煤层气地质背景、资源特征、赋存特征和储层特征,并基于煤阶分类评价原则,运用多层次模糊数学综合评判法对18个区块进行了区块优选。结果表明:(1) 18个规划区块龙潭组煤层形成于海陆过渡相沉积环境,构造条件相对复杂,煤阶变化范围宽,煤储层地域性特征明显,具有薄−中厚煤层发育、含气量高、储层能量高但渗透率低的总体特征;(2)建立了高阶煤煤层气、中阶煤煤层气有利区分类优选方法,基于不同类型煤层气评价指标体系不同的方法原则,优选了15个选区评价参数,采用层次分析法获得参数权重,并建立各参数隶属度函数,结合模糊综合评判法确定评价样本得分,得到综合评价系数;(3)根据综合评价系数,划分出有利区3个、次有利区6个、后备区9个,其中中阶煤煤层气大河边向斜区块、照子河向斜盘北区块和高阶煤煤层气大方背斜南段区块为煤层气勘探开发有利区。评价结果为未来贵州省煤层气整体有序的勘探开发工作部署提供支持。Abstract: The scientific evaluation of favorable CBM blocks concerns the deployment of CBM exploration and development and the maximization of benefits. On the basis of the existing geological and engineering data, the geological background, resource characteristics, occurrence characteristics and reservoir characteristics of CBM are studied in the 18 blocks with unregistered mining rights in Guizhou Province. According to the principle of coal rank classification and evaluation, the optimum block among the 18 blocks is selected by using the multi-level fuzzy comprehensive evaluation method. The results are as follows. (1) The coal seams of Longtan Formation in the 18 planning blocks of Guizhou Province are formed in the marine-continental transitional sedimentary environment. With relatively complex tectonic conditions, a wide range of coal rank variations, and obvious regional characteristics of coal reservoirs, they are characterized by the development of thin-medium thickness coal seams, high gas content, high reservoir energy and low permeability. (2) The method for the classification and optimization of favorable areas of medium- and high-rank CBM is established. 15 evaluation parameters are selected based on the different methods and principles of different CBM evaluation index systems. The weights of parameters are obtained by the analytic hierarchy process, and the membership function of each parameter is established. The scores of evaluation samples are determined by the fuzzy comprehensive evaluation method, and then the comprehensive evaluation coefficient is obtained. (3) By using the coefficient, three favorable areas, five sub-favorable areas and nine backup areas are identified, among which, Dahebian syncline block of medium-rank CBM, Zhaozihe syncline north block, and southern section of Dafang anticline block of high-rank CBM are favorable areas for CBM exploration and development. The evaluation results provide support for the overall and orderly deployment of CBM exploration and development in Guizhou Province in the future.
-
-
表 1 贵州三大煤田渗透率范围
Table 1 Table of permeability range of three coal fields in Guizhou Province
煤田 埋深/m 渗透率/10−3 μm2 六盘水煤田 292.22~1243.6/706.43 0.000173~0.48/0.0532 黔北煤田 205.33~1412.1/808.72 0.000004~0.69/0.153 织纳煤田 400~726.55/563.28 0.078~0.276/0.142 注:292.22~1243.6/706.43表示最小~最大值/平均值,其他数据同。 表 2 贵州省煤层气规划区选区评价参数体系
Table 2 Selection evaluation parameter system of the CBM planning area in Guizhou Province
评价指标 A煤层气勘探开发潜力 B1 地质背景 B2 资源条件 B3 储层条件 B4 开发条件 评价参数 C11 构造复杂程度 C21 地质资源量 C31 渗透率 C41 勘查程度 C12 水文地质条件 C22 地质资源丰度 C32 储层压力梯度 C42 可采系数 C13 埋深 C23 含气量 C33 含气饱和度 C14 主采煤层厚度 C34 构造煤发育程度 C15 >2 m煤层数 C16 煤阶 表 3 重要性系数确定
Table 3 Importance coefficient determination
判别矩阵 特征向量 最大特征根 随机一致性比率(C.R./%) A-B B1 B2 B3 B4 B1 1.00 1.20 1.50 4.00 0.37 4.00 0.12 B2 1/1.2 1.00 1.10 2.80 0.28 B3 1/1.5 1/1.1 1.00 2.50 0.25 B4 1/4 1/2.8 1/2.5 1.00 0.10 B1-C1 C11 C12 C13 C14 C15 C16 C11 1.00 3.00 1/1.2 1/1.4 2.00 4.00 0.22 6.05 0.82 C12 1/3 1.00 1/3.2 1/3.5 0.50 1.80 0.08 C13 1.20 3.20 1.00 1/1.2 2.20 4.00 0.24 C14 1.40 3.50 1.20 1.00 2.50 4.00 0.28 C15 1/2 2.00 1/2.2 1/2.5 1.00 3.00 0.13 C16 1/4 1/1.8 1/4 1/4 1/3 1.00 0.05 B2-C2 C21 C22 C23 C21 1.00 1/3.2 1/1.8 0.17 3.00 0.31 C22 3.20 1.00 1.50 0.51 C23 1.80 1/1.5 1.00 0.32 B3-C4 C31 C32 C33 C34 C31 1.00 2.20 1.30 1/1.2 0.29 4.00 0.06 C32 1/2.2 1.00 1/1.6 1/2.3 0.14 C33 1/1.3 1.60 1.00 1/1.5 0.23 C34 1.20 2.30 1.50 1.00 0.34 B4-C3 C41 C42 C41 1 1/2.5 0.29 2 0 C42 2.50 1 0.71 表 4 区块优选评价参数权重与评价标准赋值
Table 4 Weight of block optimization evaluation parameters and evaluation criteria assignment
参数名称 参数权重 中(高)阶煤评价标准 中(高)阶煤赋值 地质背景 构造复杂程度 0.081 简单 1.00 中等 0.60~0.80 复杂 0.40 水文地质条件 0.028 滞流区 1.00 弱径流区 0.60~0.80 径流区 0.40 埋深/m 0.090 <800 1.00 800~1200 0.60~0.80 >1200 0.40 主采煤层厚度
/m0.102 >16(>10) 1.00 8~16(8~10) 0.05x+0.20(0.2x-1) <8 0.60 >2 m煤层数 0.047 >3 1.00 2~3 0.80 ≤1 0.60 Rmax/% 0.020 >2.5(>4) 1.00 1.5~2.5(3~4) 0.4x(0.4x-0.60) <1.5(<3) 0.60 资源条件 地质资源量/
108 m30.048 >200 1.00 100~200 0.004x+0.20 <100 0.60 地质资源丰度
/(108 m3·km−2)0.145 >3 1.00 2~3 0.4x~0.20 <2 0.60 含气量/
(m3·t−1)0.091 >12(>15) 1.00 8~12(10~15) 0.1x-0.2(0.08x-0.2) <8(<10) 0.60 储层条件 渗透率/10−3 μm2 0.074 >0.10 1.00 0.01~0.10 0.60~0.80 <0.01 0.40~0.60 储层压力梯度/(MPa·hm−1) 0.035 >1.00 1.00 0.95~1.00 0.60~0.80 <0.95 0.40~0.60 含气饱和度/% 0.056 >100 1.00 60~100 0.60~0.80 <60 0.40~0.60 构造煤发育程度/% 0.084 <25 1.00 25~50 0.60~0.80 >50 0.20~0.40 开发条件 勘查程度 0.028 >0.6 1.00 0.3~0.6 2x~0.20 <0.3 0.40 可采系数/% 0.070 >60 1.00 30~60 0.02x-0.20 <30 0.40 注:表中x表示某区块实际值,前面的数字为实际值系数。 表 5 规划区各区块评价参数汇总(省略部分参数)
Table 5 Summary table of evaluation parameters of each block in the planning area
煤
类区块
编号区块
名称地质背景条件 资源条件 储层条件 开发条件 综合评
价系数评价
结果埋深/
m主采煤层
累厚/m>2 m煤
层数Rmax/
%地质资源
量/亿m3地质资源丰
度/(亿m3·km−2)含气量/
(m3·t−1)渗透率/
10−3 μm2构造煤发
育程度勘查
程度可采系
数/%中
阶
煤34 大河边向斜 600~1 100 16.08 2 0.65~0.97 208.39 4.30 4.36~24.41 中低渗 中 0.73 70.16 0.872 有利区 9 照子河向斜盘北 900~1 400 31.78 2 1.23~1.91 484.91 4.48 1.82~25.19 中渗 高 0.58 25.36 0.810 有利区 92 土城向斜深部 800~1 300 22.22 3 1.38~1.69 432.55 2.34 0.48~29.77 中渗 中 0.91 34.60 0.808 次有利区 8 盘关向斜黎明 900~1 400 20.21 4 1.47~1.62 188.13 4.99 1.89~20.30 中渗 高 0.28 72.45 0.760 次有利区 38 土地垭向斜 800~1 300 5.58 0 1.40~2.34 187.96 1.89 3.07~26.80 中 0.73 57.59 0.739 后备区 74 黔西向斜钟山−素朴 600~1 000 6.44 1 2.07~2.25 58.89 1.33 5.54~11.40 中 0.2 30.57 0.663 后备区 高
阶
煤93 大方背斜南段 600~1 000 9.50 2 3.08~3.54 113.64 1.64 7.80~22.67 中渗 中 0.74 49.24 0.821 有利区 67 黔西向斜西翼南段 500~1 000 9.40 2 3.75~4.69 109.34 1.25 2.48~26.61 中渗 中 0.72 40.69 0.806 次有利区 95 关寨向斜八步 200~700 10.97 3 2.46~2.78 69.57 1.43 10.59~18.15 高渗 中 0.62 40.73 0.798 次有利区 94 三塘向斜以那架 200~400 12.42 1 3.11~3.56 29.89 1.27 1.58~23.43 高渗 中 0.49 39.23 0.734 次有利区 17 苞谷地背斜龙场 600~1 100 10.10 2 2.54~3.03 166.59 1.99 2.74~21.07 中渗 中 0.26 26.91 0.705 次有利区 66 金龙向斜理化 1 100~1 500 11.22 1 2.76~3.52 105.42 2.34 4.12~46.59 低渗 高 0.08 41.61 0.693 后备区 18 晴隆向斜江西坡 900~1 400 15.04 5 2.88~3.23 51.03 2.97 0.27~21.81 高渗 高 0.5 50.91 0.686 后备区 19 晴隆向斜光照 700~1 200 9.73 2 3.26~3.40 85.4 3.43 5.38~15.57 中渗 高 0.73 50.91 0.683 后备区 71 黔西向斜禹漠 600~1 000 6.96 1 3.87~4.08 126.48 1.53 2.65~25.99 高渗 中 0.46 33.68 0.662 后备区 79 官田向斜官田坝 600~1 100 5.35 0 2.76~3.53 45.67 1.28 1.59~19.46 高渗 中 0.32 28.08 0.649 后备区 65 金龙向斜板桥 800~1 300 5.51 0 2.55~2.95 23.67 1.26 4.01~9.10 中渗 中 0.08 36.23 0.646 后备区 61 大方背斜双山−竹园 800~1 000 5.91 1 2.40~2.51 53.57 1.44 2.53~15.20 低渗 高 0.26 32.16 0.569 后备区 -
[1] 秦勇, 高弟. 贵州省煤层气资源潜力预测与评价[M]. 徐州: 中国矿业大学出版社, 2012. [2] 高弟,秦勇,易同生. 论贵州煤层气地质特点与勘探开发战略[J]. 中国煤炭地质,2009,21(3):20−23. GAO Di,QIN Yong,YI Tongsheng. Geological characteristics,exploration and exploitation strategy of coalbed methane resources in Guizhou,China[J]. Coal Geology of China,2009,21(3):20−23. DOI: 10.3969/j.issn.1674-1803.2009.03.006 [3] 徐宏杰. 贵州省薄—中厚煤层群煤层气开发地质理论与技术[D]. 徐州: 中国矿业大学, 2012. XU Hongjie. Geological theory and technology of coalbed methane development with thin and medium coal seam zones in Guizhou [D]. Xuzhou: China University of Mining and Technology, 2012.
[4] 敖显书. 小层射孔含煤岩段压裂煤岩层破裂行为及其机理: 以松河煤层气示范工程为例[D]. 徐州: 中国矿业大学, 2017. AO Xianshu. Coal–series strata fracture behavior and mechanism of small layer perforated coal–bearing rock section fracturing based on the CBM demonstration project of Songhe[D]. Xuzhou: China University of Mining and Technology, 2017.
[5] 刘贻军,曾祥洲,胡刚,等. 贵州煤层气储层特征及勘探开发技术对策:以比德−三塘盆地为例[J]. 煤田地质与勘探,2017,45(1):71−74. LIU Yijun,ZENG Xiangzhou,HU Gang,et al. Characteristics and technical measures of exploration and development of coalbed methane reservoir in Guizhou Province:A case of Bide–Santang area[J]. Coal Geology & Exploration,2017,45(1):71−74. DOI: 10.3969/j.issn.1001-1986.2017.01.014 [6] 刘江,桑树勋,周效志,等. 六盘水地区煤层气井合层排采实践与认识[J]. 煤田地质与勘探,2020,48(3):93−99. LIU Jiang,SANG Shuxun,ZHOU Xiaozhi,et al. Practice and understanding of multi−layer drainage of CBM wells in Liupanshui area[J]. Coal Geology & Exploration,2020,48(3):93−99. [7] 彭兴平,谢先平,刘晓,等. 贵州织金区块多煤层合采煤层气排采制度研究[J]. 煤炭科学技术,2016,44(2):39−44. PENG Xingping,XIE Xianping,LIU Xiao,et al. Study on combined coalbed methane drainage system of multi seams in Zhijin Block,Guizhou[J]. Coal Science and Technology,2016,44(2):39−44. [8] 高为,韩忠勤,金军,等. 六盘水煤田煤层气赋存特征及有利区评价[J]. 煤田地质与勘探,2018,46(5):81−89. GAO Wei,HAN Zhongqin,JIN Jun,et al. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield[J]. Coal Geology & Exploration,2018,46(5):81−89. [9] 张春朋,吴财芳,李腾,等. 主成分分析法在煤层气选区评价中的应用[J]. 煤炭科学技术,2016,44(8):137−142. ZHANG Chunpeng,WU Caifang,LI Teng,et al. Principal component analysis method applied to evaluation on coalbed methane block selection[J]. Coal Science and Technology,2016,44(8):137−142. [10] 霍凯中,赵永军,孙立冬. 灰色聚类分析在煤层气选区评价中的应用[J]. 断块油气田,2007,14(2):14−17. HUO Kaizhong,ZHAO Yongjun,SUN Lidong. Application of grey cluster analysis in selective area and evaluation of coalbed methane[J]. Fault–Block Oil & Gas Field,2007,14(2):14−17. DOI: 10.3969/j.issn.1005-8907.2007.02.005 [11] 侯海海,邵龙义,唐跃,等. 基于多层次模糊数学的中国低煤阶煤层气选区评价标准:以吐哈盆地为例[J]. 中国地质,2014,41(3):1002−1009. HOU Haihai,SHAO Longyi,TANG Yue,et al. Criteria for selected areas evaluation of low rank CBM based on multi–layered fuzzy mathematics:A case study of Turpan–Hami Basin[J]. Geology in China,2014,41(3):1002−1009. DOI: 10.3969/j.issn.1000-3657.2014.03.025 [12] 孙文卿,冉茂云,熊建龙,等. 突变理论在煤层气储层评价中的应用:以准噶尔盆地砂沟井田为例[J]. 天然气工业,2013,33(2):28−31. SUN Wenqing,RAN Maoyun,XIONG Jianlong,et al. Application of catastrophe theory to CBM reservoir evaluation of the Shagou coal field,Junggar basin[J]. Natural Gas Industry,2013,33(2):28−31. DOI: 10.3787/j.issn.1000-0976.2013.02.006 [13] 张春朋. 黔西六盘水煤田煤层气资源特征与有利区优选[D]. 徐州: 中国矿业大学, 2017. ZHANG Chunpeng. Resource characteristics and optimization of coalbed methane in Liupanshui coalfield[D]. Xuzhou: China University of Mining and Technology, 2017.
[14] 徐宏杰,桑树勋,杨景芬,等. 贵州省煤层气勘探开发现状与展望[J]. 煤炭科学技术,2016,44(2):1−7. XU Hongjie,SANG Shuxun,YANG Jingfen,et al. Status and expectation on coalbed methane exploration and development in Guizhou Province[J]. Coal Science and Technology,2016,44(2):1−7. [15] 熊孟辉,秦勇,易同生. 贵州晚二叠世含煤地层沉积格局及其构造控制[J]. 中国矿业大学学报,2006,35(6):778−782. XIONG Menghui,QIN Yong,YI Tongsheng. Sedimentary patterns and structural controls of Late Permian coal–bearing strata in Guizhou,China[J]. Journal of China University of Mining & Technology,2006,35(6):778−782. DOI: 10.3321/j.issn:1000-1964.2006.06.016 [16] 戴传固,王敏,陈建书,等. 贵州构造运动特征及其地质意义[J]. 贵州地质,2013,30(2):119−124. DAI Chuangu,WANG Min,CHEN Jianshu,et al. Tectonic movement characteristics and its geological significance of Guizhou[J]. Guizhou Geology,2013,30(2):119−124. DOI: 10.3969/j.issn.1000-5943.2013.02.008 [17] 邵龙义,高彩霞,张超,等. 西南地区晚二叠世层序−古地理及聚煤特征[J]. 沉积学报,2013,31(5):856−866. SHAO Longyi,GAO Caixia,ZHANG Chao,et al. Sequence–paleogeography and coal accumulation of Late Permian in southwestern China[J]. Acta Sedimentologica Sinica,2013,31(5):856−866. [18] 邵龙义,华芳辉,易同生,等. 贵州省乐平世层序–古地理及聚煤规律[J]. 煤田地质与勘探,2021,49(1):45−56. SHAO Longyi,HUA Fanghui,YI Tongsheng,et al. Sequence– paleogeography and coal accumulation of Lopingian in Guizhou Province[J]. Coal Geology & Exploration,2021,49(1):45−56. DOI: 10.3969/j.issn.1001-1986.2021.01.005 [19] 申建,秦勇,傅雪海,等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学,2014,25(9):1470−1476. SHEN Jian,QIN Yong,FU Xuehai,et al. Properties of deep coalbed methane reservoir–forming conditions and critical depth discussion[J]. Natural Gas Geoscience,2014,25(9):1470−1476. [20] 高为, 韩忠勤, 吕放, 等. 六盘水地区煤层含气性地质特征及差异成因[J/OL]. 煤炭科学技术, 2022: 1–10[2022–1–23] . http://kns.cnki.net/kcms/detail/11.2402.TD.20210520.0855.002.html. GAO Wei, HAN Zhongqin, LYU Fang, et al. Difference characteristics and main controlling factors in gas−bearing of coal seams in Liupanshui area[J/OL]. Coal Science and Technology, 2022: 1–10[2022–1–23] . http://kns.cnki.net/kcms/detail/11.2402.TD.20210520.0855.002.html.
[21] 李道品, 罗迪强, 刘雨芬, 等. 低渗透砂岩油田开发[M]. 北京: 石油工业出版社, 1997. [22] 许浩,汤达祯,秦勇,等. 黔西地区煤储层压力发育特征及成因[J]. 中国矿业大学学报,2011,40(4):556−560. XU Hao,TANG Dazhen,QIN Yong,et al. Characteristics and origin of coal reservoir pressure in the west Guizhou area[J]. Journal of China University of Mining & Technology,2011,40(4):556−560. [23] 郭金玉,张忠彬,孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报,2008,18(5):148−153. GUO Jinyu,ZHANG Zhongbin,SUN Qingyun. Study and applications of analytic hierarchy process[J]. China Safety Science Journal,2008,18(5):148−153. DOI: 10.3969/j.issn.1003-3033.2008.05.025 [24] 韩俊,邵龙义,肖建新,等. 多层次模糊数学在煤层气开发潜力评价中的应用[J]. 煤田地质与勘探,2008,36(3):31−35. HAN Jun,SHAO Longyi,XIAO Jianxin,et al. Application of multi–layered fuzzy mathematics in assessment of exploitation potential of coalbed methane resources[J]. Coal Geology & Exploration,2008,36(3):31−35. DOI: 10.3969/j.issn.1001-1986.2008.03.008 [25] 秦勇,刘焕杰,桑树勋,等. 煤层气资源综合评价标准及实例研究[J]. 中国煤层气,1996(2):91−93. QIN Yong,LIU Huanjie,SANG Shuxun,et al. Comprehensive evaluation standard and case study of coalbed methane resources[J]. China Coalbed Methane,1996(2):91−93. [26] 苏付义. 煤层气储集层评价参数及其组合[J]. 天然气工业,1998,118(4):16−21. SU Fuyi. Coalbed methane reservoir evaluation parameters and their combinations[J]. Natural Gas Industry,1998,118(4):16−21. DOI: 10.3321/j.issn:1000-0976.1998.04.005 [27] 刘键烨,罗东坤,李祖欣,等. 煤层气选区评价指标权重研究[J]. 煤炭技术,2018,37(11):38−40. LIU Jianye,LUO Dongkun,LI Zuxin,et al. Study on weight of CBM selected area evaluation index[J]. Coal Technology,2018,37(11):38−40. [28] 邓雪,李家铭,曾浩健,等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识,2012,42(7):93−100. DENG Xue,LI Jiaming,ZENG Haojian,et al. Research on computation methods of AHP wight vector and its applications[J]. Mathematics in Practice and Theory,2012,42(7):93−100. DOI: 10.3969/j.issn.1000-0984.2012.07.012 [29] 桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543. SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543. [30] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.