留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微服务的地质保障系统架构与应用

李鹏 程建远

李鹏,程建远.基于微服务的地质保障系统架构与应用[J].煤田地质与勘探,2022,50(1):118−127. doi: 10.12363/issn.1001-1986.21.11.0632
引用本文: 李鹏,程建远.基于微服务的地质保障系统架构与应用[J].煤田地质与勘探,2022,50(1):118−127. doi: 10.12363/issn.1001-1986.21.11.0632
LI Peng,CHENG Jianyuan.Design and implementation of the geological guarantee system architecture based on microservices[J].Coal Geology & Exploration,2022,50(1):118−127. doi: 10.12363/issn.1001-1986.21.11.0632
Citation: LI Peng,CHENG Jianyuan.Design and implementation of the geological guarantee system architecture based on microservices[J].Coal Geology & Exploration,2022,50(1):118−127. doi: 10.12363/issn.1001-1986.21.11.0632

基于微服务的地质保障系统架构与应用

doi: 10.12363/issn.1001-1986.21.11.0632
基金项目: 国家重点研发计划课题(2018YFC0807804);天地科技股份有限公司科技创新创业资金专项项目(2019-TD-ZD003,2020-TD-ZD002)
详细信息
    第一作者:

    李鹏,1982年生,男,山东临沂人,博士研究生,助理研究员,研究方向为面向智能开采的透明矿井构建技术. E-mail:lipeng@cctegxian.com

  • 中图分类号: P623

Design and implementation of the geological guarantee system architecture based on microservices

  • 摘要: 煤炭地质保障系统对煤矿的安全、高效生产具有非常重要的作用。煤矿地质保障系统开发面临数据来源多样、地质监测系统集成开发语言不统一、定制化软件导致地质保障平台在不同煤矿适应性差等问题。提出微服务的地质保障系统开发架构,架构分为3层,分别是应用层、平台层和基础设施层。微服务的地质保障架构规范了开发过程,简化了使用的技术栈,优化了系统集成开发流程;将通用的技术业务固化在开发架构,将需要集成的地质类子系统等专业属性强的业务通过微服务方式进行开发和部署运行,降低了开发、集成难度;使用Docker技术封装微服务镜像,让微服务的部署运行不再受到运行环境的影响,提高跨平台移植性,降低了系统的部署难度,缩短了部署时间。微服务地质保障系统架构在唐家会地质保障系统中的开发实践证明:架构的应用改变了现有地质保障类软件的开发模式,通用业务与专业类业务分离,以微服务的形式实现多专业应用集成,便于多团队并行开发,提高工作效率;微服务实现了系统内部各功能之间的高内聚低耦合,不同方法的钻探、物探等专业功能开发可独立完成,使后期运维、修改的可控性大大提高。

     

  • 图  单体架构

    Fig. 1  Schematic diagram of single architecture

    图  微服务架构

    Fig. 2  Schematic diagram of microservice architecture

    图  微服务地质保障系统架构

    Fig. 3  Architecture of the geological guarantee system based on microservices

    图  Spring Cloud Gateway的处理流程

    Fig. 4  Processing flow of Spring Cloud Gateway

    图  微服务业务逻辑调用关系

    Fig. 5  Logic calling relationship of microservice business

    图  微震监测微服务实现

    Fig. 6  Implementation of the microseismic monitoring microservice

    图  微服务测试界面

    Fig. 7  Microseismic microservice test interface

    图  微服务部署流程

    Fig. 8  Microservice deployment process

    图  微震监测数据展示

    Fig. 9  Microseismic monitoring data display

    图  10  智能地质保障系统

    Fig. 10  Intelligent geological guarantee system

    表  1  微服务选型对比

    Table  1  Comparison of the microservice selections

    功能Spring CloudDubboMotangRPCThrift
    通信协议REST/HTTP(支持gRPC)RPC(远程方法)协议RPC(远程方法)协议RPC(远程方法)协议RPC(远程方法)协议
    服务注册与发现Eureka(AP)Zookeeper(CP)Zookeeper /consul
    负载均衡RibbonRandom/Round Robbin支持
    容错机制
    熔断机制Hystrix
    配置中心Spring Cloud Config依赖外部组件Zookeeper提供
    网关Zuul,Gateway
    服务监控Hystrix+Turbine、SpringBoot Admin(SBA)Dubbo+Monitor
    链路监控Sleuth+Zipkin
    多语言支持REST支持多种语言
    社区活跃一般一般
    消息总线Spring Cloud Bus
    数据流Spring Cloud Stream
    批量任务Spring Cloud Task
    下载: 导出CSV
  • [1] 王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909−1924.

    WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909−1924.
    [2] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
    [3] 王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1−27.

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1−27.
    [4] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.. doi: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.. doi: 10.3969/j.issn.1001-1986.2021.01.003
    [5] 张洪涛,段发阶,王学影,等. 基于MVC设计模式搭建嵌入式系统应用框架[J]. 哈尔滨工业大学学报,2009,41(1):166−168.. doi: 10.3321/j.issn:0367-6234.2009.01.038

    ZHANG Hongtao,DUAN Fajie,WANG Xueying,et al. Application framework of embedded system based on MVC design pattern[J]. Journal of Harbin Institute of Technology,2009,41(1):166−168.. doi: 10.3321/j.issn:0367-6234.2009.01.038
    [6] 卢新明,阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报,2019,44(8):2296−2305.

    LU Xinming,KAN Shuting. Geological guarantee and transparent geological cloud computing technology of precision coal mining[J]. Journal of China Coal Society,2019,44(8):2296−2305.
    [7] 马丽,段中会,张建军,等. 基于精细勘查的煤矿地质保障信息系统[J]. 中国煤炭地质,2020,32(9):70−73.. doi: 10.3969/j.issn.1674-1803.2020.09.11

    MA Li,DUAN Zhonghui,ZHANG Jianjun,et al. Coalmine geological security information system based on fine prospecting[J]. Coal Geology of China,2020,32(9):70−73.. doi: 10.3969/j.issn.1674-1803.2020.09.11
    [8] 董宪海. 矿井地质保障系统的关键技术[J]. 黑龙江科学,2016,7(1):30.. doi: 10.3969/j.issn.1674-8646.2016.01.015

    DONG Xianhai. Key technologies of mine geological support system[J]. Heilongjiang Science,2016,7(1):30.. doi: 10.3969/j.issn.1674-8646.2016.01.015
    [9] 吴化尧,邓文俊. 面向微服务软件开发方法研究进展[J]. 计算机研究与发展,2020,57(3):525−541.. doi: 10.7544/issn1000-1239.2020.20190624

    WU Huayao,DENG Wenjun. Research progress on the development of microservices[J]. Journal of Computer Research and Development,2020,57(3):525−541.. doi: 10.7544/issn1000-1239.2020.20190624
    [10] 冯新扬,沈建京. REST和RPC两种Web服务架构风格比较分析[J]. 小型微型计算机系统,2010,31(7):1393−1395.

    FENG Xinyang,SHEN Jianjing. REST and RPC comparative analysis of two Web services architectural styles[J]. Journal of Chinese Computer Systems,2010,31(7):1393−1395.
    [11] 王方旭. 基于Spring Cloud实现业务系统微服务化的设计与实现[J]. 电子技术与软件工程,2018(8):60−61.

    WANG Fangxu. Design and implementation of microservicing of business system based on spring cloud[J]. Electronic Technology & Software Engineering,2018(8):60−61.
    [12] 官东亮. 基于微服务的业务平台架构重构[J]. 电信科学,2020,36(9):75−83.

    GUAN Dongliang. Service platform architecture reconstruction based on microservices[J]. Telecommunications Science,2020,36(9):75−83.
    [13] 张丽敏,高晶,李务斌,等. 微服务环境下容器编排可视化实践研究[J]. 计算机工程与科学,2019,41(8):1366−1373.. doi: 10.3969/j.issn.1007-130X.2019.08.005

    ZHANG Limin,GAO Jing,LI Wubin,et al. Visualization of container orchestration in microservice environment[J]. Computer Engineering & Science,2019,41(8):1366−1373.. doi: 10.3969/j.issn.1007-130X.2019.08.005
    [14] 杨凯琪,赵玉龙,陈林. 异构容器云间应用迁移模型研究[J]. 计算机应用研究,2020,37(4):1097−1101.

    YANG Kaiqi,ZHAO Yulong,CHEN Lin. Study on migration of applications between heterogeneous container clouds[J]. Application Research of Computers,2020,37(4):1097−1101.
    [15] 袁亮,董书宁. “煤炭安全高效绿色智能开采地质保障”专辑特邀主编致读者[J]. 煤炭学报,2020,45(7):2329−2330.

    YUAN Liang,DONG Shuning. Specially invited editor in chief of “geological guarantee for safe, efficient, green and intelligent coal mining” album to readers[J]. Journal of China Coal Society,2020,45(7):2329−2330.
    [16] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126.

    CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.
    [17] 贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五”主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32−44.. doi: 10.3969/j.issn.1001-1986.2021.01.004

    JIA Jiancheng,GONG Zewen,JIN Dewu,et al. The main progress in the 13th five–year plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32−44.. doi: 10.3969/j.issn.1001-1986.2021.01.004
    [18] 靳德武,李鹏,赵春虎,等. 采场三维充水结构地质建模及动态可视化实现[J]. 煤炭科学技术,2020,48(7):143−149.

    JIN Dewu,LI Peng,ZHAO Chunhu,et al. Geological modeling and implementation on dynamic visualization of three–dimensional water filling structure in stope of underground mine[J]. Coal Science and Technology,2020,48(7):143−149.
    [19] 张幼振,范涛,阚志涛,等. 煤矿巷道掘进超前钻探技术应用与发展[J]. 煤田地质与勘探,2021,49(5):286−293.

    ZHANG Youzhen,FAN Tao,KAN Zhitao,et al. Application and development of advanced drilling technology for coal mine roadway heading[J]. Coal Geology & Exploration,2021,49(5):286−293.
    [20] 刘文明,程建远,刘再斌,等. 掘进工作面前方煤层底板高程动态预测的试验研究[J]. 煤田地质与勘探,2021,49(1):257−262.. doi: 10.3969/j.issn.1001-1986.2021.01.028

    LIU Wenming,CHENG Jianyuan,LIU Zaibin,et al. Experimental study on dynamic prediction of coal seam floor elevation in heading face[J]. Coal Geology & Exploration,2021,49(1):257−262.. doi: 10.3969/j.issn.1001-1986.2021.01.028
    [21] 李鹏,程建远. 回采工作面煤层三维建模技术及其在智能开采中的应用[J]. 煤矿安全,2021,52(8):156−161.

    LI Peng,CHENG Jianyuan. 3D modeling technology of coal seam in working face and its application in intelligent mining[J]. Safety in Coal Mines,2021,52(8):156−161.
    [22] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1−9.. doi: 10.3969/j.issn.1001-1986.2019.03.001

    CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic–while–mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1−9.. doi: 10.3969/j.issn.1001-1986.2019.03.001
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  17
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-07
  • 修回日期:  2021-12-01
  • 录用日期:  2022-01-25
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-01-27

目录

    /

    返回文章
    返回