留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井电阻率法监测系统在采煤工作面水害防治中的应用

鲁晶津 王冰纯 李德山 段建华

鲁晶津,王冰纯,李德山,等.矿井电阻率法监测系统在采煤工作面水害防治中的应用[J].煤田地质与勘探,2022,50(1):36−44. doi: 10.12363/issn.1001-1986.21.10.0596
引用本文: 鲁晶津,王冰纯,李德山,等.矿井电阻率法监测系统在采煤工作面水害防治中的应用[J].煤田地质与勘探,2022,50(1):36−44. doi: 10.12363/issn.1001-1986.21.10.0596
LU Jingjin,WANG Bingchun,LI Deshan,et al.Application of mine-used resistivity monitoring system in working face water disaster control[J].Coal Geology & Exploration,2022,50(1):36−44. doi: 10.12363/issn.1001-1986.21.10.0596
Citation: LU Jingjin,WANG Bingchun,LI Deshan,et al.Application of mine-used resistivity monitoring system in working face water disaster control[J].Coal Geology & Exploration,2022,50(1):36−44. doi: 10.12363/issn.1001-1986.21.10.0596

矿井电阻率法监测系统在采煤工作面水害防治中的应用

doi: 10.12363/issn.1001-1986.21.10.0596
基金项目: 陕西省自然科学基础研究计划项目(2019JQ-939,2020JQ-995)
详细信息
    第一作者:

    鲁晶津,1983年生,女,湖北随州人,博士,副研究员,从事矿井电磁法勘探及其应用研究. E-mail:lujingjin@cctegxian.com

  • 中图分类号: P631

Application of mine-used resistivity monitoring system in working face water disaster control

  • 摘要: 煤矿智能化、无人化开采迫切需要水害隐患地质透明化为其保驾护航。矿井电阻率法监测系统针对工作面回采过程中的水害问题,采用伪随机信号发射和全波形数据采集提高设备的抗干扰能力,采用电极接地条件一致性校正和监测数据归一化处理等手段压制假异常,采用时移电阻率成像实现水害隐患电阻率异常响应的识别和提取,通过监测工作面回采过程中顶、底板电阻率变化对水害风险进行判识,实现采动工作面水害隐患的地质透明化。结合矿井电阻率法监测系统近年来的井下现场试验,分别介绍其在顶、底板水害监测中的应用案例。井下试验结果显示,电阻率法监测可以有效捕捉顶、底板出水过程的前兆信息。但在实际应用中,矿井电阻率法监测系统依旧面临强电磁干扰以及采空区监测线缆难以保护等问题,并且采掘扰动对煤岩电阻率的影响机理研究不足,导致对电阻率异常进行分析解释时存在较大争议,还需要进一步开展相关研究工作。

     

  • 图  矿井电阻率法监测系统拓扑图[2]

    Fig. 1  Topological graph of the mine-used electrical resistivity monitoring system[2]

    图  共发射点曲线一致性校正结果

    Fig. 2  Consistency correction results of common transmission point curves

    图  葛泉矿11916工作面出水事件前后电阻率变化

    Fig. 3  Resistivity variations before and after the water outflow in working face 11916 of Gequan Coal Mine

    图  陷落柱位置与低阻异常位置[16]

    Fig. 4  Digram of the collapse column position and low resistivity anomaly position[16]

    图  上湾煤矿12401工作面9月监测结果

    Fig. 5  Monitoring results of working face 12401 in Shangwan Coal Mine in September

    图  上湾煤矿12401工作面12月监测结果

    Fig. 6  Monitoring results of working face 12401 in Shangwan Coal Mine in December

    图  R122孔12月水位曲线

    Fig. 7  Water level curve of borehole R122

  • [1] 王国法,徐亚军,孟祥军,等. 智能化采煤工作面分类、分级评价指标体系[J]. 煤炭学报,2020,45(9):3033−3044.

    WANG Guofa,XU Yajun,MENG Xiangjun,et al. Specification, classification and grading evaluation index for smart longwall mining face[J]. Journal of China Coal Society,2020,45(9):3033−3044.
    [2] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264.

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.
    [3] 张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14−35.

    ZHANG Pingsong,XU Shi’ang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14−35.
    [4] 鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18−26.

    LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18−26.
    [5] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348−356.. doi: 10.3321/j.issn:1000-6915.2009.02.019

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348−356.. doi: 10.3321/j.issn:1000-6915.2009.02.019
    [6] 刘盛东,杨胜伦,曹煜,等. 煤层顶板透水水量与地电场参数响应分析[J]. 采矿与安全工程学报,2010,27(3):341−345.. doi: 10.3969/j.issn.1673-3363.2010.03.010

    LIU Shengdong,YANG Shenglun,CAO Yu,et al. Analysis about response of geoelectric field parameters to water inrush volume from coal seam roof[J]. Journal of Mining & Safety Engineering,2010,27(3):341−345.. doi: 10.3969/j.issn.1673-3363.2010.03.010
    [7] 刘静,刘盛东,曹煜,等. 地下水渗流与地电场参数响应的定量研究[J]. 岩石力学与工程学报,2013,32(5):986−993.. doi: 10.3969/j.issn.1000-6915.2013.05.017

    LIU Jing,LIU Shengdong,CAO Yu,et al. Quantitative study of geoelectrical parameter response to groundwater seepage[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(5):986−993.. doi: 10.3969/j.issn.1000-6915.2013.05.017
    [8] 刘志新,王明明. 环工作面电磁法底板突水监测技术[J]. 煤炭学报,2015,40(5):1117−1125.

    LIU Zhixin,WANG Mingming. Study on encircling face electromagnetic method for monitoring coal face floor inrush[J]. Journal of China Coal Society,2015,40(5):1117−1125.
    [9] 朱鲁,翟培合,魏久传,等. 工作面底板动态监测系统开发研究[J]. 矿业安全与环保,2008,35(3):57−58.. doi: 10.3969/j.issn.1008-4495.2008.03.019

    ZHU Lu,ZHAI Peihe,WEI Jiuchuan,et al. Development of dynamic monitoring system for working face floor[J]. Mining Safety & Environmental Protection,2008,35(3):57−58.. doi: 10.3969/j.issn.1008-4495.2008.03.019
    [10] 王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118−121.

    WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo−random sequence[J]. Safety in Coal Mines,2018,49(12):118−121.
    [11] 刘斌,李术才,聂利超,等. 矿井突水灾变过程电阻率约束反演成像实时监测模拟研究[J]. 煤炭学报,2012,37(10):1722−1731.

    LIU Bin,LI Shucai,NIE Lichao,et al. Research on simulation of mine water inrush real−time monitoring of using electrical resistivity constrained inversion imaging method[J]. Journal of China Coal Society,2012,37(10):1722−1731.
    [12] LIU Bin,LIU Zhengyu,LI Shucai,et al. An improved Time–Lapse resistivity tomography to monitor and estimate the impact on the groundwater system induced by tunnel excavation[J]. Tunnelling and Underground Space Technology,2017,66:107−120.. doi: 10.1016/j.tust.2017.04.008
    [13] 李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61−64.. doi: 10.3969/j.issn.1001-1986.2008.02.016

    LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61−64.. doi: 10.3969/j.issn.1001-1986.2008.02.016
    [14] 张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952−956.. doi: 10.3969/j.issn.1000-7598.2012.03.047

    ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952−956.. doi: 10.3969/j.issn.1000-7598.2012.03.047
    [15] 雷凯丽. 基于钻孔电阻率法的回采工作面底板水害动态监测应用研究[J]. 中国煤炭,2020,46(1):77−81.

    LEI Kaili. Application study on water damage dynamic monitoring in the floor of mining face based on borehole resistivity method[J]. China Coal,2020,46(1):77−81.
    [16] 鲁晶津. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化,2021,47(2):18−25.

    LU Jingjin. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industry and Mine Automation,2021,47(2):18−25.
    [17] 鲁晶津,李德山,王冰纯. 超大采高工作面顶板电阻率监测可行性试验[J]. 煤田地质与勘探,2019,47(3):186−194.. doi: 10.3969/j.issn.1001-1986.2019.03.029

    LU Jingjin,LI Deshan,WANG Bingchun. Feasibility test of roof resistivity monitoring for super−high mining face[J]. Coal Geology & Exploration,2019,47(3):186−194.. doi: 10.3969/j.issn.1001-1986.2019.03.029
    [18] 王冰纯.基于2n伪随机序列的矿井电法监测系统研制[D].北京: 煤炭科学研究总院, 2016.

    WANG Bingchun.Development of mine electrical monitoring system based on 2n pseudorandom sequence[D].Beijing: China Coal Research Institute, 2016.
    [19] PIDLISECKY A,HABER E,KNIGHT R. RESINVM3D: A 3D resistivity inversion package[J]. Geophysics,2007,72(2):H1−H10.. doi: 10.1190/1.2402499
    [20] DAILY W, RAMIREZ A, BINLEY AM, et al.Electrical resistance tomography: Theory and practice[C]//Near Surface Geophysics.Society of Exploration Geophysicists, 2005: 525–550.
    [21] LABRECQUE D,YANG Xianjin. Difference inversion of ERT data:A fast inversion method for 3−D in situ monitoring[J]. Journal of Environmental & Engineering Geophysics,2001,6(2):316−321.
    [22] LOKE M H.Constrained time−lapse resistivity imaging inversion[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems.2001, 192: EEM7.
    [23] 李白英. 预防矿井底板突水的“下三带”理论及其发展与应用[J]. 山东矿业学院学报(自然科学版),1999,18(4):11−18.

    LI Baiying. “Down Three Zones” in the prediction of the water inrush from coalbed floor aquifer–theory, development and application[J]. Journal of Shandong Institute of Mining and Technology(Natural Science),1999,18(4):11−18.
    [24] 程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699−706.. doi: 10.3321/j.issn:0001-5733.2000.05.014

    CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699−706.. doi: 10.3321/j.issn:0001-5733.2000.05.014
  • 加载中
图(7)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  71
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2021-12-06
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-01-27

目录

    /

    返回文章
    返回